Categories
Data & Analytics

Silver Layer Python ETL With The AWS Glue ETL Job Script Editor

In this post, I create my WordPress data pipeline’s Silver ETL process using Python and the AWS Glue ETL Job Script Editor.

Table of Contents

Introduction

Last time I worked on my WordPress AWS data pipeline, I produced my Bronze layer data and created a Glue Crawler to derive the schema of the Bronze S3 objects. It’s now time to start cleaning that data to prepare it for reporting, aggregation and consumption.

I’m also currently studying for the AWS Certified Data Engineer – Associate certification. While revising for this I learned the capabilities of the AWS Glue ETL Job Script Editor, and it seemed an ideal fit for my Silver ETL process. So I decided to make a post out of it and see how things went!

Firstly, I’ll examine the AWS Glue ETL Job Script Editor and how it will benefit my Silver ETL process. Then I’ll define the architecture of the Silver ETL job and how it fits into the existing data pipeline. Next, I’ll script and test the job. Finally, I’ll integrate it into the pipeline and explore the job’s costs.

Glue ETL Job Script Editor

This section examines the AWS Glue ETL Script Editor and Python Shell and considers some of Python Shell’s benefits and limitations.

Script Editor & Python Shell

Script Editor is a feature of AWS Glue. It offers serverless Spark, Ray and Python shells, enabling data transformation, preparation and cleaning with no infrastructure management. Scripts can be both uploaded and created from scratch, and version control is configurable to several Git services.

This post focuses on AWS Glue Python Shell. Introduced in 2019, Python Shell jobs suit small to medium-sized tasks as part of an ETL workflow.

Python Shell Pros

This section examines some of Python Shell’s benefits.

Low Cost

Python Shell jobs are the cheapest of the Glue job types to run. Glue charges are based on data processing units (DPUs). A single standard DPU currently provides 4 vCPU and 16 GB of memory. While regular Glue ETL jobs using Apache Spark need at least 2 DPUs, Python Shell jobs default to using only 1/16 (or 0.0625) DPU!

This can also be extended to 1 DPU, resulting in faster completion times. Like AWS Lambda, charges accrue based on resource usage and duration. So increased resource allocation can potentially create further savings.

This section was correct as of August 2024 – the latest pricing data is on the AWS Glue pricing site.

Low Barrier To Entry

Python Shell jobs offer accessibility for those from a scripting background. When creating a new script in the console, users only need to choose the engine (in this case Python) and whether the script is being uploaded or created fresh. And that’s it! No configuring interpreters, environments or dependencies.

Python Shell jobs also integrate with other AWS services. They can easily connect to data sources like S3, RDS and DynamoDB. They can be automated with Glue Workflows and Triggers. IAM can also control access to both the Python Shell job and the AWS services it interacts with.

Included Python Libraries

AWS Glue Python Shell includes a variety of built-in Python libraries that are useful for ETL tasks. These libraries cover a range of functionalities such as data processing, machine learning, and interacting with AWS services.

They include:

This AWS post has a full table of included libraries and their versions. Additional libraries can be installed and imported using PIP.

Some people will quickly see issues with this list though…

Python Shell Cons

This section examines some of Python Shell’s limitations.

Outdated Python Versions & Libraries

While the included libraries are welcome, they are also quite outdated. For example, boto3‘s included version is 1.21.21 while the current version is 1.34.150. pandas is at 1.4.2 in the table and 2.2.2 online.

This is likely due to the supported Python versions – currently Python 3.6 and Python 3.9. Now, while Python 3.9 isn’t out of support until October 2025, it was released back in October 2020 and has had three major upgrades since. Worse, Python 3.6 ended life at Christmas 2021!

With the Data Engineer Associate certification drawing attention to various AWS data services, it’s a shame that this feature is so far behind. This would be a great modernisation tool for importing legacy Python scripts into Glue, but the last feature update was in 2022 and it’s really starting to lag behind now.

No Visual Editor

Yes I know it’s a script editor but hear me out.

Let’s briefly segue to AWS IAM. In the early days, updating IAM policies had the potential of losing afternoons to missing braces or errant commas. There was no native AWS validation tooling and the whole thing felt like a dark art for those less experienced.

Then AWS released an IAM visual policy editor. And things went from this:

2024 07 30 IAMPolicyJSON

To this!

2024 07 30 IAMPolicyDown

This transformed the IAM policy-writing process. The guesswork was gone – new policies could be written using dropdowns and checkboxes. And AWS would generate the same code each time, in the same way and to the same standard.

In today’s AWS console, IAM can be administrated both visually and as JSON. Updates made in the visual editor reflect in the code in real-time, and vice versa. And the IAM IDE immediately flags syntax issues, unclosed keypairs and whatnot.

This interface would work so well with Glue Script Editor. It would simplify and encourage using Script Editor, creating standardised code by default and reducing development time. No more syntax violations, verbose comments or missing dependencies – AWS could handle all that.

This doesn’t even need AI – it would just be procedural code generation. Something like selecting awswrangler from a dropdown list, then selecting an S3 location to read or write and a file type to expect. Or even a list of code snippets for the included libraries. These features could all lighten the dev load.

Limited IDE

Let’s consider AWS Lambda’s IDE:

2024 07 30 LambdaIDE

Its benefits include:

  • Code autocompletion
  • Integrated testing
  • Integrated monitoring

And tons of other user-focused functionality. Conversely, this is the Glue Script Editor IDE:

2024 07 30 GlueIDE

Hmm.

Now don’t get me wrong – I’m not asking for Lambda Lite. But something a bit more than Notepad would be nice. AWS are currently making a massive deal of Amazon CodeWhisperer and Amazon Q Developer‘s autocomplete actions, but here pandas isn’t even suggested when I type import pan. And it’s an included library!

The obvious solution is to just use Lambda. But Glue Script Editor offers a sweet spot where it runs custom Python while operating entirely within the AWS Glue service. This is helpful for features like Glue Triggers and Workflows that can’t currently trigger Lambda functions. It’s also helpful with AWS Organisations, where using Glue Script Editor for Python ETL can enable SCPs that entirely block access to AWS Lambda for data-centric accounts.

So Why Use It?

So are Glue Python Shell jobs worth considering with these limitations? Definately! There are several use cases favouring them:

  • Legacy ETL jobs that either can’t use recent Python versions and libraries, or simply don’t need them.
  • Simple, lightweight tasks that don’t require the more advanced (and expensive) features of Apache Spark or Ray.
  • Tasks that need to run quickly, as Python Shells have faster startup times than the Spark environments used by regular Glue ETL jobs.
  • Long-running ETL tasks unsuitable for AWS Lambda, as Python Shell jobs can run for up to 48 hours compared to Lambda’s 15 minutes. Thanks to Yan Cui‘s blog for that one!

For my requirements, a Python Shell job makes sense because I’m doing simple transformations on small volumes of data.

Architecture

This section examines the architecture of my proposed solution. Much of this architecture is similar to the Bronze layer. I’ll examine the new Silver ELT job, followed by the updated data pipeline Step Function workflow.

Glue Silver ETL Job

Firstly, this is the Glue Silver ETL job:

Amazon S3
Bronze Bucket
Amazon S3…
Amazon S3
Silver Bucket
Amazon S3…
AWS Glue
Silver ETL Job
AWS Glue…
Amazon CloudWatch
Logs
Amazon CloudWatch…
1
1
2
2
AWS Cloud
AWS Cloud
Text is not SVG – cannot display

While updating CloudWatch Logs throughout:

  1. Silver Glue ETL job extracts data from wordpress-api Bronze S3 objects and performs Python transformations.
  2. Silver Glue ETL job loads the transformed data into Silver S3 bucket as Parquet objects.

Step Function Workflow

Next, the updated Step Function workflow:

AWS Cloud
AWS Cloud
EventBridge
Schedule
EventBridge…
AWS Step Functions workflow
AWS Step Functions workflow
3
3
AWS Lambda Raw Function
AWS Lambda Ra…
AWS SNS Topic
AWS SNS Topic
2
2
State
Machine
State…
AWS Lambda Bronze Function
AWS Lambda Br…
F
F
5
5
AWS Glue
Bronze Crawler
AWS Glue…
4
4
AWS Glue
Silver ETL Job
AWS Glue…
F
F
F
F
1
1
F
F
EventBridge
Scheduler
EventBridge…
AWS SNS Topic
AWS SNS Topic
User
User
CloudWatch Logs
CloudWatch Lo…
F
F
F
F
Text is not SVG – cannot display

While updating the workflow’s CloudWatch Log Group throughout:

  1. An EventBridge Schedule executes the Step Functions workflow.
  2. Raw Lambda function is invoked.
    • Invocation Fails: Publish SNS message. Workflow ends.
    • Invocation Succeeds: Invoke Bronze Lambda function.
  3. Bronze Lambda function is invoked.
    • Invocation Fails: Publish SNS message. Workflow ends.
    • Invocation Succeeds: Run Glue Crawler.
  4. Glue Crawler runs.
    • Run Fails: Publish SNS message. Workflow ends.
    • Run Succeeds: Update Glue Data Catalog. Run Glue Silver ETL job.
  5. Glue Silver ETL job runs.
    • Run Fails: Publish SNS message. Workflow ends.
    • Run Succeeds: Workflow ends.

An SNS message is published if the Step Functions workflow fails.

Silver ETL Job

In this section, I create the Silver ETL Python script for the AWS Glue Script Editor. Firstly I’ll define the script’s requirements. Next, I’ll translate them into Python code, and finally I’ll create the ETL script and upload it to Git.

Requirements

Firstly, let’s define the requirements for this data pipeline layer. So what does a typical Silver ETL process involve?

Databricks defines the Silver layer as cleansed and conformed data:

In the Silver layer of the lakehouse, the data from the Bronze layer is matched, merged, conformed and cleansed (“just-enough”) so that the Silver layer can provide an “Enterprise view” of all its key business entities, concepts and transactions. (e.g. master customers, stores, non-duplicated transactions and cross-reference tables).

https://www.databricks.com/glossary/medallion-architecture

Because my data source is a WordPress MySQL database, most of the cleansing and conforming work I’d expect to do has already been done there! That said, there’s data that I definitely won’t need, as well as other transformations I can apply to help downstream reporting.

Some of the following transformations can be done at the SQL reporting level with date and string functions. However, these add repetitive load and complexity to queries, which can be avoided by some cleaning transformations. Roche’s Maxim of Data Transformation applies here:

Data should be transformed as far upstream as possible, and as far downstream as necessary.

https://ssbipolar.com/2021/05/31/roches-maxim/

The Silver layer transformations I’m doing here are:

Column Removal

Many columns are empty or unneeded, so now is the time to remove them. This will reduce the data held in the Silver objects, making them cheaper to store and faster to query.

My script uses the pandas.DataFrame.drop function to remove columns by specifying column names. Here, a term_order column is dropped from the DataFrame df:

Python
df = df.drop(columns=['term_order'])

Date Splitting

Dates are tough to analyse and don’t aggregate well, as each date is effectively three different data points in one field. Splitting dates into years, months and days improves data bucketing, query granularity and time series analytics.

My script uses the pandas to_datetime function to convert scalar, array-like, Series or DataFrame/dict-like objects to pandas datetime objects.

Here, values in the date column of the DataFrame df are converted from strings to datetime objects and stored in a new date_todate column. Next, the year attribute of each date_todate column object is extracted and stored in a new date_year column. Finally, the same happens for month and day attributes:

Python
df['date_todate'] = pd.to_datetime(df['date'])

df['date_year'] = df['date_todate'].dt.year
df['date_month'] = df['date_todate'].dt.month
df['date_day'] = df['date_todate'].dt.day

String Editing

Some columns use HTML character entity names for reserved characters. For example, & in place of &. This is great for rendering HTML but not great for analytics.

My script uses the str.replace string method to return a copy of each string with all occurrences of the specified substring replaced by a new one. Here, all instances of & amp; in the name column are overwritten with &:

Python
df['name'] = df['name'].str.replace('& amp;','&')

So that’s the transformations. What else is the script doing?

Python Script

Most of the Silver script processes are similar to the Bronze script ones, including:

  • Logging
  • Getting parameters
  • Accessing S3 objects

So most functionality is reused from my Bronze Lambda function, which is fully documented in this post. To summarise the imports:

Python
import logging                          # Logging
import boto3                            # AWS Interactions
import botocore                         # AWS Exceptions
import awswrangler as wr                # S3 Interactions
import pandas as pd                     # Data Manipulation
from botocore.client import BaseClient  # AWS Type Hints

Some changes have been made for the Silver script:

  • Parameters, object names and logs have been updated from Bronze to Silver:
Python
parametername_snstopic: str = '/sns/data/lakehouse/silver'

logging.info("Getting S3 Silver parameter...")

s3_bucket_silver = get_parameter_from_ssm(client_ssm, parametername_s3bucket_silver)
  • New functionality identifies the AWS AccountID the script is running in:
Python
# Get & display AWS AccountID
identity = client_sts.get_caller_identity()
account_id = identity['Account']
logging.info(f"Starting in AWS Account ID {account_id}")

This is more of a sanity check for me – I have several AWS accounts and want to check I’ve accessed the right one!

  • A test that stops the current loop interaction if the object name doesn’t match one of the expected ones:
Python
# Check if object is mapped and bypass if not.
if object_name not in {'posts', 'statistics_pages', 'term_relationship', 'term_taxonomy', 'terms'}:

logging.warning(f'{object_name} is not currently mapped.  Skipping transform...')

object_count_failure += 1
continue

Finally, I wrote a new function for my Silver transformation logic. This isn’t included here (although it is in my repo) because it’s long. Very long! My first thought was to decouple the ETL processes from each other and write separate scripts for each object. So 5 in total.

However, Python Shell jobs are billed per second with a 1-minute minimum. So 5 jobs = 5 minutes billed. But the job only takes around 60 seconds to process all five objects! I’d have run up 5 times the usage and 5 times the cost for no real benefit.

The full script is in my Github repo.

Testing was quick because it was effectively repeating the Bronze script tests with new parameters. After successfully testing the script locally, it’s time to get it working in AWS!

Uploading & Testing

In this section I upload my Silver ETL script, integrate it with AWS Glue Script Editor and AWS Step Functions and test everything works as expected.

Creating The Python Shell Job

Firstly, let’s get my script into AWS Glue. There are several ways of doing this. If the script is uploaded to S3 then AWS can create a Glue ETL job with the AWS CLI create-job command:

Bash

 aws glue create-job --name python-job-cli --role Glue_DefaultRole 
     --command '{"Name" :  "pythonshell", "PythonVersion": "3.9", "ScriptLocation" : "s3://DOC-EXAMPLE-BUCKET/scriptname.py"}'  
     --max-capacity 0.0625

And with the AWS CloudFormation AWS::Glue::Job resource:

YAML
AWSTemplateFormatVersion: 2010-09-09
Resources:
  Python39Job:
    Type: 'AWS::Glue::Job'
    Properties:
      Command:
        Name: pythonshell
        PythonVersion: '3.9'
        ScriptLocation: 's3://DOC-EXAMPLE-BUCKET/scriptname.py'
      MaxRetries: 0
      Name: python-39-job
      Role: RoleName           
        

Scripts can also be pulled from Git repositories. Here I’ll create my Silver ETL job in the Glue Script Editor console. This creates a new Python script in an S3 bucket location of s3://aws-glue-assets-[AWSAccountID]-[Region]/scripts/.

Next, the new job needs an IAM role with appropriate permissions for the AWS services the script interacts with. Other parameters, including maximum DPU, job timeout value and Python version, can also be set. In addition, Glue Data Quality checks are also supported. And, once saved, the Glue job can have a schedule applied.

Testing Job Execution

AWS Glue records data for each job execution and publishes extensive details and logs:

2024 08 09 AWSGlueJobRun

Glue stores details about the job and Python environment, and logs are published and stored in Amazon Cloudwatch.

And so begins the testing! Initially, I was getting one of my own Python boto3 exceptions:

ValueError: No SNS topic returned.

Easy to fix. This IAM policy was based on the same one that my Bronze Lambda function uses. But the Silver ETL script uses different AWS resources so some IAM policy ARNs need to change. Specifically, the Silver ETL job’s IAM role needs to allow:

  • ssm:GetParameter on the required Parameter Store parameters.
  • sns:Publish on the required SNS topics.
  • s3:GetObject on the data-lakehouse-silver/wordpress_api/* objects.

With these changes, the Silver ETL job runs perfectly and creates new objects in the Silver S3 bucket:

2024 08 09 MonitoringTimeline

With the Glue job running and S3 object creation verified successfully, it’s time to validate the data.

Data Integration & Validation

Validating the data involves two processes:

  • Integrating the data into the Glue Data Catalog.
  • Querying the data with Amazon Athena.

There are several ways to update the Glue Data Catalog, and here I’ll create a new Glue Crawler using a similar setup to my Bronze Crawler. This time the crawler is reading objects from the Silver S3 bucket instead of the Bronze one, and the new Glue Data Catalog tables are prefixed with silver- instead of bronze-.

The Silver crawler creates these new tables in the Glue Data Catalog’s wordpress_api database:

2024 08 06 GlueDataCatalog

This gives Athena visibility of the tables, enabling data validation via SQL query execution. Querying wordpress_api.silver-terms shows the removed column and updated strings:

2024 08 06 AthenaSilverTerms

And querying wordpress_api.silver-statistics_pages shows the split dates:

2024 08 06 AthenaSilverStatistics pages

Looks good! Now that everything has been validated, let’s add these steps to the WordPress Data Pipeline.

Step Function Update

The WordPress Data Pipeline Step Function workflow that I started back in March continues to grow. There’s a new job and a second crawler to add to it now!

The Silver crawler is added in the same way as the Bronze one (including the IAM changes) so let’s focus on adding the new Glue Python Shell ETL job.

Adding Glue ETL jobs to a Step Function workflow is well documented The task uses the StartJobRun Glue API action under the hood and has an optimized integration that enables the .sync integration pattern. Enabling this means the Step Functions workflow waits for the StartJobRun request to complete before progressing to the next state.

However, my workflow currently lacks IAM permissions to run the Silver Glue ETL job. So I make a new IAM policy that allows the glue:StartJobRun action on the Silver Glue ETL job and attach it to the workflow’s IAM role:

JSON
{
	"Version": "2012-10-17",
	"Statement": [
		{
			"Sid": "VisualEditor0",
			"Effect": "Allow",
			"Action": [
				"glue:StartJobRun"
			],
			"Resource": "arn:aws:glue:eu-west-1:[REDACTED]:job/wordpressapi_silver"
		}
	]
}

My Step Function workflow now looks like this:

2024 08 09 stepfunctions graph

Let’s execute the Step Function workflow and check it works.

Step Function Test

Upon execution, everything works as intended. The new StartGlueJob action is triggered and the Glue ETL job is successful:

2024 08 06 GlueJobDetails

But the Step Function doesn’t transition to the next step. In fact it continued running to the point I had to stop it myself after several minutes:

2024 08 06 StepFunctionsStop

So what’s going on? I asked Amazon Q about this behaviour, and in its response were the following points:

  1. Step Functions uses a “sync” integration with AWS Glue, which means it relies on polling the status of the Glue job using the GetJobRun API call.
  2. The polling schedule is designed to be once per minute for the first 10 minutes, and then every 5 minutes thereafter. This is to avoid excessive API calls to Glue.
Amazon Q

Q also linked to this AWS repost answer with further details:

This is an expected behavior in case of .sync integration with AWS Glue. Service integrations that use the .sync pattern require additional IAM permissions where Step Functions will make use of a managed Eventbridge rule to monitor the status of the job. However, AWS Glue does not support Eventbridge integration and thus, Step Functions polls the job status using the GetJobRun API call to fetch the status of the job.

https://repost.aws/questions/QUFFlHcbvIQFe-bS3RAi7TWA/a-glue-job-in-a-step-function-is-taking-so-long-to-continue-the-next-step

This made things clearer. When Step Functions starts a Glue ETL job using a StartGlueJob action with optimized integration, Step Functions determines that job’s status (and thus when to transition to the next action) by calling Glue’s GetJobRun API.

However, my workflow’s IAM role doesn’t have permission to do that! And because Step Functions can’t determine the ETL job’s status, it doesn’t know that the job has finished and the next state transition never happens! Everything stops!

This is resolved by adding the glue:GetJobRun action to the workflow’s IAM policy:

JSON
{
	"Version": "2012-10-17",
	"Statement": [
		{
			"Sid": "VisualEditor0",
			"Effect": "Allow",
			"Action": [
				"glue:StartJobRun",
				"glue:GetJobRun"
			],
			"Resource": "arn:aws:glue:eu-west-1:REDACTED:job/wordpressapi_silver"
		}
	]
}

This time, the Glue GetJobRun API calls are successful. The Step Functions workflow validates that the ETL job has finished, moves to the next state as intended and ultimately completes successfully:

2024 08 06 ExecutionSuccessFull

Thanks Amazon Q!

Costs

Finally, let’s look at the costs for my Glue Script Editor Silver ETL Job resources.

This graph shows all Glue API costs between 2024-07-31 (first AWS job execution) and 2024-09-09:

2024 08 09 CostExplorerGlue

Of the $0.38:

  • $0.37 is the CrawlerRun API for the two Glue Crawlers I’m running.
  • $0.01 is the Jobrun API for the 15 job runs between 2024-07-31 and 2024-09-09.

So all things considered, very manageable!

Summary

In this post, I created my WordPress data pipeline’s Silver ETL process using Python and the AWS Glue ETL Job Script Editor.

I found the Script Editor jobs very useful. They offer Lambda’s benefits of scalability, managed infrastructure and integration with other AWS services, combined with data-centric libraries and features that make it easier to hit the ground running development-wise. It has clear limitations and could do with some AWS TLC, but it was a good fit here and rivals Lambda for some future ETL processes I have planned.

If this post has been useful then the button below has links for contact, socials, projects and sessions:

SharkLinkButton 1

Thanks for reading ~~^~~

Categories
Data & Analytics

Discovering Data With AWS Glue

In this post, I use the data discovering features of AWS Glue to crawl and catalogue my WordPress API pipeline data.

Table of Contents

Introduction

By the end of my WordPress Bronze Data Orchestration post, I had created an AWS Step Function workflow that invokes two AWS Lambda functions:

stepfunctions graph

The data_wordpressapi_raw function gets data from the WordPress API and stores it as CSV objects in Amazon S3. The data_wordpressapi_bronze function transforms these objects to Parquet and stores them in a separate bucket. If either function fails, AWS SNS publishes an alert.

While this process works fine, the extracted data is not currently utilized. To derive value from this data, I need to consider transforming it. Several options are available, such as:

  • Creating new Lambda functions.
  • Importing the data into a database.
  • Third-party solutions like Databricks.

Here, I’ve chosen to use AWS Glue. As a fully managed ETL service, Glue automates various data processes in a low-code environment. I’ve not written much about it, so it’s time that changed!

Firstly, I’ll examine AWS Glue and some of its concepts. Next, I’ll create some Glue resources that interact with my WordPress S3 objects. Finally, I’ll integrate those resources into my existing Step Function workflow and examine their costs.

Let’s begin with some information about AWS Glue.

AWS Glue Concepts

This section explores AWS Glue and some of its data discovering features.

AWS Glue

From the AWS Glue User Guide:

AWS Glue is a serverless data integration service that makes it easy for analytics users to discover, prepare, move, and integrate data from multiple sources. You can use it for analytics, machine learning, and application development. It also includes additional productivity and data ops tooling for authoring, running jobs, and implementing business workflows.

https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html

Glue can be accessed using the AWS Glue console web interface and the AWS Glue Studio graphical interface. It can also be accessed programmatically via the AWS Glue CLI and the AWS Glue SDK.

Benefits of AWS Glue include:

  • Data-specific features like data cataloguing, schema discovery, and automatic ETL code generation.
  • Infrastructure optimised for ETL tasks and data processes.
  • Built-in scheduling capabilities and job execution.
  • Integration with other AWS services like Athena and Redshift.

AWS Glue’s features fall into Discover, Prepare, Integrate and Transform categories. The Glue features used in this post come from the data discovering category.

Glue Data Catalog

An AWS Glue Data Catalog is a managed repository serving as a central hub for storing metadata about data assets. It includes table and job definitions, and other control information for managing an AWS Glue environment. Each AWS account has a dedicated AWS Glue Data Catalog for each region.

The Data Catalog stores information as metadata tables, with each table representing a specific data store and its schema. Glue tables can serve as sources or targets in job definitions. Tables are organized into databases, which are logically grouped collections of related table definitions.

Each table contains column names, data type definitions, partition information, and other metadata about a base dataset. Data Catalog tables can be populated either manually or using Glue Crawlers.

Glue Crawler

A Glue Crawler connects to a data store, analyzes and determines its schema, and then creates metadata tables in the AWS Glue Data Catalog. They can run on-demand, be automated by services like Amazon EventBridge Scheduler and AWS Step Functions, and be started by AWS Glue Triggers.

Crawlers can crawl several data stores including:

  • Amazon S3 buckets via native client.
  • Amazon RDS databases via JDBC.
  • Amazon DocumentDB via MongoDB client.

An activated Glue Crawler performs the following processes on the chosen data store:

  • Firstly, data within the store is classified to determine its format, schema and properties.
  • Secondly, data is grouped into tables or partitions.
  • Finally, the Glue Data Catalog is updated. Glue creates, updates and deletes tables and partitions, and then writes the metadata to the Data Catalog accordingly.

Now let’s create a Glue Crawler!

Creating A Glue Crawler

In this section, I use the AWS Glue console to create and run a Glue Crawler for discovering my WordPress data.

Crawler Properties & Sources

There are four steps to creating a Glue Crawler. Step One involves setting the crawler’s properties. Each crawler needs a name and can have optional descriptions and tags. This crawler’s name is wordpress_bronze.

Step Two sets the crawler’s data sources, which is greatly influenced by whether the data is already mapped in Glue. If it is then the desired Glue Data Catalog tables must be selected. Since my WordPress data isn’t mapped yet, I need to add the data sources instead.

My Step Function workflow puts the data in S3, so I select S3 as my data source and supply the path of my bronze S3 bucket’s wordpress_api folder. The crawler will process all folders and files contained in this S3 path.

Finally, I need to configure the crawler’s behaviour for subsequent runs. I keep the default setting, which re-crawls all folders with each run. Other options include crawling only folders added since the last crawl or using S3 Events to control which folders to crawl.

Classifiers are also set here but are out of scope for this post.

Crawler Security & Targets

Step Three configures security settings. While most of these are optional, the crawler needs an IAM role to interact with other AWS services. This role consists of two IAM policies:

  • An AWSGlueServiceRole AWS managed policy which allows access to related services including EC2, S3, and Cloudwatch Logs.
  • A customer-managed policy with s3:GetObject and s3:PutObject actions allowed on the S3 path given in Step Two.

This role can be chosen from existing roles or created with the crawler.

Step Four begins with setting the crawler’s output. The Crawler creates new tables, requiring the selection of a target database for these tables. This database can be pre-existing or created with the crawler.

An optional table name prefix can also be set, which enables easy table identification. I create a wordpress_api database in the Glue Data Catalog, and set a bronze- prefix for the new tables.

The Crawler’s schedule is also set here. The default is On Demand, which I keep as my Step Function workflow will start this crawler. Besides this, there are choices for Hourly, Daily, Weekly, Monthly or Custom cron expressions.

Advanced options including how the crawler should handle detected schema changes and deleted objects in the data store are also available in Step Four, although I’m not using those here.

And with that, my crawler is ready to try out!

Running The Crawler

My crawler can be tested by accessing it in the Glue console and selecting Run Crawler:

2024 05 23 RunCrawler

The crawler’s properties include run history. Each row corresponds to a crawler execution, recording data including:

  • Start time, end time and duration.
  • Execution status.
  • DPU hours for billing.
  • Changes to tables and partitions.
2024 05 23 GlueCrawlerRuns

AWS stores the logs in an aws-glue/crawlers CloudWatch Log Group, in which each crawler has a dedicated log stream. Logs include messages like the crawler’s configuration settings at execution:

Crawler configured with Configuration 
{
    "Version": 1,
    "CreatePartitionIndex": true
}
 and SchemaChangePolicy 
{
    "UpdateBehavior": "UPDATE_IN_DATABASE",
    "DeleteBehavior": "DEPRECATE_IN_DATABASE"
}

And details of what was changed and where:

Table bronze-statistics_pages in database wordpress_api has been updated with new schema

Checking The Data Catalog

So what impact has this had on the Data Catalog? Accessing it and selecting the wordpress_api database now shows five tables, each matching S3 objects created by the Step Functions workflow:

2024 05 23 GlueDataCatalogTables

Data can be viewed by selecting Table Data on the desired row. This action executes an Athena query, triggering a message about the cost implications:

You will be taken to Athena to preview data, and you will be charged separately for Athena queries.

If accepted, Athena generates and executes a SQL query in a new tab. In this example, the first ten rows have been selected from the wordpress_api database’s bronze-posts table:

SQL
SELECT * 
FROM "AwsDataCatalog"."wordpress_api"."bronze-posts" 
LIMIT 10;

When this query is executed, Athena checks the Glue Data Catalog for the bronze-posts table in the wordpress_api database. The Data Catalog provides the S3 location for the data, which Athena reads and displays successfully:

2024 05 23 AthenaBronzeQueryResults

Now that the crawler works, I’ll integrate it into my Step Function workflow.

Crawler Integration & Costs

In this section, I integrate my Glue Crawler into my existing Step Function workflow and examine its costs.

Architectural Diagrams

Let’s start with some diagrams. This is how the crawler will behave:

While updating the crawler’s wordpress_bronze CloudWatch Log Stream throughout:

  1. The wordpress_bronze Glue Crawler crawls the bronze S3 bucket’s wordpress-api folder.
  2. The crawler updates the Glue Data Catalog’s wordpress-api database.

This is how the Crawler will fit into my existing Step Functions workflow:

wordpress api stepfunction rawbronze

While updating the workflow’s CloudWatch Log Group throughout:

  1. An EventBridge Schedule executes the Step Functions workflow.
  2. Raw Lambda function is invoked.
    • Invocation Fails: Publish SNS message. Workflow ends.
    • Invocation Succeeds: Invoke Bronze Lambda function.
  3. Bronze Lambda function is invoked.
    • Invocation Fails: Publish SNS message. Workflow ends.
    • Invocation Succeeds: Run Glue Crawler.
  4. Glue Crawler runs.
    • Run Fails: Publish SNS message. Workflow ends.
    • Run Succeeds: Update Glue Data Catalog. Workflow ends.

An SNS message is published if the Step Functions workflow fails.

Step Function Integration

Time to build! Let’s begin with the crawler’s requirements:

  • The crawler must only run after both Lambda functions.
  • It must also only run if both functions invoke successfully first.
  • If the crawler fails it must alert via the existing PublishFailure SNS topic.

This requires adding an AWS Glue: StartCrawler action to the workflow after the second AWS Lambda: Invoke action:

2024 05 23 StepFunctionStartCrawler

This action differs from the ones I’ve used so far. The existing actions all use optimized integrations that provide special Step Functions workflow functionality.

Conversely, StartCrawler uses an SDK service integration. These integrations behave like a standard AWS SDK API call, enabling more fine-grained control and flexibility than optimised integrations at the cost of needing more configuration and management.

Here, the Step Functions StartCrawler action calls the Glue API StartCrawler action. After adding it to my workflow, I update the action’s API parameters with the desired crawler’s name:

JSON
{
  "Name": "wordpress_bronze"
}

Next, I update the action’s error handling to catch all errors and pass them to the PublishFailure task. These actions produce these additions to the workflow’s ASL code:

JSON
  "Start Bronze Crawler": {
      "Type": "Task",
      "End": true,
      "Parameters": {
        "Name": "wordpress_bronze"
      },
      "Resource": "arn:aws:states:::aws-sdk:glue:startCrawler",
      "Catch": [
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "PublishFailure"
        }
      ]
    },

And result in an updated workflow graph:

stepfunctions graph gluecrawler

Additionally, the fully updated Step Functions workflow ASL script can be viewed on my GitHub.

Finally, I need to update the Step Function workflow IAM role’s policy so that it can start the crawler. This involves allowing the glue:StartCrawler action on the crawler’s ARN:

JSON
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "AllowBronzeGlueCrawler",
            "Effect": "Allow",
            "Action": [
                "glue:StartCrawler"
            ],
            "Resource": [
                "arn:aws:glue:eu-west-1:[REDACTED]:crawler/wordpress_bronze"
            ]
        }

My Step Functions workflow is now orchestrating the Glue Crawler, which will only run once both Lambda functions are successfully invoked. If either function fails, the SNS topic is published and the crawler does not run. If the crawler fails, the SNS topic is published. Otherwise, if everything runs successfully, the crawler updates the Data Catalog as needed.

So how much does discovering data with AWS Glue cost?

Glue Costs

This is from AWS Glue’s pricing page for crawlers:

There is an hourly rate for AWS Glue crawler runtime to discover data and populate the AWS Glue Data Catalog. You are charged an hourly rate based on the number of Data Processing Units (or DPUs) used to run your crawler. A single DPU provides 4 vCPU and 16 GB of memory. You are billed in increments of 1 second, rounded up to the nearest second, with a 10-minute minimum duration for each crawl.

$0.44 per DPU-Hour, billed per second, with a 10-minute minimum per crawler run

https://aws.amazon.com/glue/pricing/

And for the Data Catalog:

With the AWS Glue Data Catalog, you can store up to a million objects for free. If you store more than a million objects, you will be charged $1.00 per 100,000 objects over a million, per month. An object in the Data Catalog is a table, table version, partition, partition indexes, statistics or database.

The first million access requests to the Data Catalog per month are free. If you exceed a million requests in a month, you will be charged $1.00 per million requests over the first million. Some of the common requests are CreateTable, CreatePartition, GetTable , GetPartitions, and GetColumnStatisticsForTable.

https://aws.amazon.com/glue/pricing/

So how does this relate to my workflow? The below Cost Explorer chart shows my AWS Glue API costs from 01 May to 28 May. Only the CrawlerRun API operation has generated charges, with a daily average of $0.02:

2024 05 28 GlueAPICostMay28

My May 2024 AWS bill shows further details on the requests and storage items. The Glue Data Catalog’s free tier covers my usage:

2024 05 28 GlueCostsMay28

Finally, let’s review the entire pipeline’s costs for April and May. Besides Glue, my only other cost remains S3:

2024 05 28 CostExplorerAprMay

Summary

In this post, I used the data discovering features of AWS Glue to crawl and catalogue my WordPress API pipeline data.

Glue’s native features and integration with other AWS services make it a great fit for my WordPress pipeline’s pending processes. I’ll be using additional Glue features in future posts, and wanted to spotlight the Data Catalog early on as it’ll become increasingly helpful as my use of AWS Glue increases.

If this post has been useful then the button below has links for contact, socials, projects and sessions:

SharkLinkButton 1

Thanks for reading ~~^~~

Categories
Training & Community

Shark’s Summit Session

In this post, I discuss my recent Building And Automating Data Pipelines session presented at 2024’s AWS Summit London.

Table of Contents

Introduction

One of my YearCompass 2024 goals was to build a personal brand and focus on my soft skills and visibility. After participating in 2023’s New Stars Of Data 6 event, I wrote some new session abstracts and considered my next move. Then in February I saw Matheus Guimaraes‘ LinkedIn invite to submit sessions for 2024’s AWS Summit London event:

2024 04 09 LinkedInMatheus

I mulled it over, deciding to submit an abstract using my recent WordPress Data Pipeline project. At the very least, it’d be practice for both writing abstracts and pushing myself to submit them.

And that’s where I expected it to end. Until…

2024 04 09 GmailAccept

Just like that, I was heading to the capital again! And this time as a speaker!

My AWS Summit London (ASL) experience was going to be different from my New Stars Of Data (NSOD) one in several ways:

  • While NSOD was virtual, ASL would be in person.
  • I had four months to prepare for NSOD, and five weeks for ASL.
  • My NSOD session was 60 minutes, while ASL would be 30.

So I dusted off my NSOD notes, put a plan together and got to work!

Preparation

This section examines the preparation of the slides and demo for my summit session.

Slides

Firstly, I brainstormed what the session should include from my recent posts. Next, I storyboarded what the session’s sections would be. These boiled down to:

  • Defining the problem. I wanted to use an existing framework for this, ultimately choosing the 4Vs Of Big Data. These have been around since the early 2000’s, and are equally valid today for EDA and IOT events, API requests, logging metrics and many other modern technologies.
  • Examining the AWS services comprising the data pipeline, and highlighting features of each service that relate to the 4Vs.
  • Demonstrating the AWS services in a real pipeline and showing further use cases.

This yielded a rough schedule for the session:

  • 00:00-05:00 Introduction
  • 05:00-10:00 Problem Definition
  • 10:00-15:00 Solution Architecture
  • 15:00-20:00 Demo
  • 20:00-25:00 Summary
  • 25:00-30:00 Questions

Creating and editing the slide deck was much simpler with this in place. Each slide now needed to conform with and add value to its section. It became easier to remove bloat and streamline the wordier slides.

Several slides then received visual elements. This made them more audience-friendly and gave me landmarks to orient myself within the deck. I used AWS architecture icons on the solution slides and sharks on the problem slides. Lots of sharks.

Here’s the finished deck. I regret nothing.

As I was rounding off the slides, the summit agenda was published with the Community Lounge sessions. It was real now!

2024 04 24 AWSSummitSession

Demo

I love demos and was keen to include one for my summit session.

Originally I wanted a live demo, but this needed a good internet connection. It was pointed out to me that an event with thousands of people might not have the best WiFi reception, leading to slow page loads at best and 404s at worst!

So I recorded a screen demo instead. From a technical standpoint, this protected the demo from platform outages, network failures and zero-day bugs. And from a delivery standpoint, a pre-recorded demo let me focus on communicating my message to the audience instead of potentially losing my place, mistyping words and overrunning the allocated demo time.

The demo used this workflow, executed by an EventBridge Schedule:

stepfunctions graph

The demo’s first versions involved building the workflow and schedule from scratch. This overran the time allocation and felt unfocused. Later versions began with a partly constructed workflow. This built on the slides and improved the demo’s flow. I was far happier with this version, which was ultimately the one I recorded.

I recorded the demo with OBS Studio – a free open-source video recording and live-streaming app. There’s a lot to OBS, and I found this GuideRealmVideos video helpful in setting up my recording environment:

Delivery

This section covers the rehearsal and delivery of my AWS summit session.

Rehearsal

With everything in place, it was time to practise!

I had less time to practise this compared to NSOD, so I used various strategies to maximise my time. I started by practising sections separately while refining my notes. This gave all sections equal attention and highlighted areas needing work.

Next, after my success with it last time, I did several full run-throughs using PowerPoint’s Speaker Coach. This went well and gave me confidence in the content and slide count.

2024 04 27 RehersalReportClip

The slide visuals worked so well that I could practise the opening ten minutes without the slides in front of me! This led to run-throughs while shopping, on public transport and even in the queue for the AWS Summit passes.

Probably got some weird looks for that. I still regret nothing.

Practising the demo was more challenging! While the slides were fine as long as I hit certain checkpoints, the demo’s pace was entirely pre-determined. I knew what the demo would do, but keeping in sync with my past self was tricky to master. I was fine as long as I could see my notes and the demo in real-time.

Finally, on the night before I did some last-minute practice runs with the hotel room’s TV:

PXL 20240423 1801344612

On The Day

My day started with being unable to find the ExCel’s entrance! Great. But still better than a 05:15 Manchester train! I got my event pass and hunted for the Community Lounge, only to find my name in lights!

PXL 20240424 1202226372

The lounge itself was well situated, away from potentially distracting stands and walkways but still feeling like an important part of the summit.

PXL 20240424 0850558352

I spent some time adjusting to the space and battling my brewing anxiety. Then Matheus and Rebekah Kulidzan appeared and gave me some great and much-appreciated advice and encouragement! Next, I went for a wander with my randomised feel-good playlist that threw out some welcome bangers:

I watched Yan’s session, paying attention to his delivery and mannerisms alongside his session’s content. After he finished I powered on, signed in and miked up. The lounge setup was professional but not intimidating, and the AWS staff were helpful and attentive. Finally, at noon I went live!

IMG 3907
Photo by Thembile Ndlovu

The session went great! I had a good audience, kept my momentum and hit my section timings. I had a demo issue when my attempt to duplicate displays failed. Disaster was averted by playing the demo on the main screens only!

Finally, my half-hour ended and I stepped off the stage to applause, questions and an unexpected hug!

Looking Back

So what’s next?

I was happy with the amount of practice I did, and will continue putting time into this in the coming months. I’ve submitted my summit session to other events, and the more rehearsals I complete the higher my overall standard should get.

I also want to find a more reliable way of showing demos without altering Windows display settings. Changing these settings mid-presentation isn’t the robust solution I thought it was, so I want to find a feature or setting that’ll take care of that.

Finally, I plan to act on advice from Laurie Kirk. She suggested speaking about a day’s events on camera and then watching it back the following day. This highlights development areas and will get me used to speaking under observation.

Summary

In this post, I discussed my recent Building And Automating Data Pipelines session presented at 2024’s AWS Summit London.

When writing my post about the 2022 AWS Summit London event, I could never have known I’d find myself on the lineup a few years later! Tech communities do great jobs of driving people forward, and while this is usually seen through a technical lens the same is true for personal skills.

The AWS Community took this apprehensive, socially anxious shark and gave him time, a platform and an audience. These were fantastic gifts that I’m hugely grateful for and will always remember.

PXL 20240424 1606465872

If this post has been useful then the button below has links for contact, socials, projects and sessions:

SharkLinkButton 1

Thanks for reading ~~^~~