Categories
Developing & Application Integration

Simplified Data Workflows With AWS Step Functions Variables

In this post, I use AWS Step Functions variables and JSONata to create a simplified API data capture workflow with Lambda and DynamoDB.

Table of Contents

Introduction

I’ve become an AWS Step Functions convert in recent times. Back in 2020 when I first studied it for some AWS certifications, Step Functions defined workflows entirely in JSON, making it less approachable and often overlooked.

How times change! With 2021’s inclusion of a visual editor, Step Functions became far more accessible, helping it become a key tool in serverless application design. And in 2024 two major updates significantly enhanced Step Functions’ flexibility: JSONata support, which I recently explored, and built-in variables, which simplify state transitions and data management. This post focuses on the latter.

To demonstrate the power of Step Functions variables, I’ll walk through a practical example: fetching API data, verifying the response, and inserting it into DynamoDB. Firstly, I’ll examine the services and features I’ll use. Then I’ll create a state machine and examine each state’s use of variables. Finally, I’ll complete some test executions to ensure everything works as expected.

If a ‘simplified’ workflow seems hard to justify as a 20-minute read…that’s fair. But mastering Step Functions variables now can save hours of debugging and development in the long run! – Ed

Also, special thanks to AWS Community Builder Md. Mostafa Al Mahmud for generously providing AWS credits to support this and future posts!

Architecture

This section provides a top-level view of the architecture behind my simplified Step Functions variables workflow, highlighting the main AWS services involved in getting and processing API data. I’ll briefly cover the data being used, the role of Step Functions variables and the integration of DynamoDB within the workflow.

API Data

The data comes from a RESTful API that provides UK car details. The API needs both an authentication key and query parameters. Response data is provided in JSON.

The data used in this post is about my car. As some of it is sensitive, I will only use data that is already publicly available:

JSON
{
    "make": "FORD",
    "yearOfManufacture": 2014,
    "engineCapacity": 1242,
    "co2Emissions": 120,
    "fuelType": "PETROL",
    "markedForExport": false,
    "colour": "GREY",
}

There are several data types here. This will be important when writing to DynamoDB!

AWS Step Functions Variables

In my last post, I talked about JSONata in AWS Step Functions. This time let’s talk about Step Functions variables, which were introduced alongside JSONata in November 2024.

Step Functions variables offer a simple way to store and reuse data within a state machine, enabling dynamic workflows without complex transformations. They work well with both JSONata and JSONPath and are available at no extra cost in all AWS regions that support Step Functions.

Variables are set using Assign. They can be assigned static values for fixed values:

JSON
"Assign": {
    "productName": "product1",
    "count" : 42,
    "available" : true
}

As well as dynamic values for changing values. To dynamically set variables, Step Functions uses JSONata expressions within {% ... %}. The following example extracts productName and available from the state input using the JSONata $states reserved variable:

JSON
"Assign": {
    "product": "{% $states.input.productName %}",
    "available": "{% $states.input.available %}"
}

Variables are then referenced using dollar signs ($), e.g. $productName.

There’s tonnes more to this. For details on name syntax, ASL integration and creating JSONPath variables, check the Step Functions Developer Guide variables section. Additionally, watch AWS Principal Developer Advocate Eric Johnson‘s related video:

With Step Functions variables handling data transformation and persistence, the next step is storing processed data efficiently. This is where Amazon DynamoDB comes in.

Amazon DynamoDB

DynamoDB is a fully managed NoSQL database built for high performance and seamless scalability. Its flexible, schema-less design makes it perfect for storing and retrieving JSON-like data with minimal overhead.

DynamoDB can automatically scale to manage millions of requests per second while maintaining low latency. It integrates seamlessly with AWS services like Lambda and API Gateway, providing built-in security, automated backups, and global replication to ensure reliability at any scale.

Popular use cases include:

  • Serverless backends (paired with AWS Lambda/API Gateway) for API-driven apps.
  • Real-time workloads like user sessions, shopping carts, or live leaderboards.
  • High-velocity data streams from IoT devices or clickstream analytics.

Diagram

Finally, here is an architectural diagram of my simplified Step Functions variables workflow:

In which:

  1. The user triggers an AWS Step Functions state machine with a JSON key-value pair as input.
  2. A Lambda function is invoked with the input payload.
  3. The Lambda function sends a POST request to a third-party API.
  4. The API server responds with JSON data.
  5. The Lambda function assigns Step Functions variables to store API response values and enters a Choice state that checks the API response code.
  6. If the Choice state condition fails, SNS publishes a failure notification email.
  7. The state machine terminates with an ExecutionFailed status.
  8. If the Choice state condition passes, the processed API response data is written to a DynamoDB table.
  9. SNS publishes a success notification email.
  10. The state machine terminates with an ExecutionSucceeded status.

If an error occurs at any point in execution, SNS publishes a failure notification email and the state machine terminates with an ExecutionFailed status.

Resources

In this section, I create and configure my simplified Step Functions variables workflow resources, which are:

  • AWS Lambda function
  • AWS Step Functions Choice state
  • Amazon DynamoDB table
  • Amazon SNS topic

AWS Lambda

This section details how I created an AWS Lambda function to interact with a REST API. The function makes a secure POST request, manages potential errors and parses the response for use in downstream states. Additionally, I will discuss an issue I encountered while attempting to create variables from the function’s output using JSONata.

Lambda Function

First, I need to write a function. It’s nothing special – I have the API link and security key I need, and I just want to retrieve some data. So I decided to give Amazon Q Developer a try!

I used this prompt:

I have an HTTPS hyperlink for a REST API and an API key. I want to send a POST request to the API using the key. I have a USERID parameter that I will pass as JSON.

Please write a Python function for AWS Lambda with error handling. Please use security best practises and Pythonic standards.

Yes I do say Please in my prompts.

Amazon Q produced a decent script with:

  • API endpoint and key stored as environment variables.
  • Use of the requests module with a timeout to prevent indefinite hangs.
  • Error handling for request failures, validation errors, and unexpected issues.
  • A structured JSON response including the status code and parsed response.
Python
import json
import os
import logging
import requests
from typing import Dict, Any
from botocore.exceptions import ClientError

# Configure logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event: Dict[str, Any], context: Any) -> Dict[str, Any]:
    """
    AWS Lambda function to make POST request to API endpoint
    Args:
        event: Lambda event object containing request data
        context: Lambda context object
    Returns:
        API response as dictionary
    """
    try:
        # Get API endpoint and key from environment variables
        api_endpoint = os.environ['API_ENDPOINT']
        api_key = os.environ['API_KEY']

        # Extract user ID from event
        user_id = event.get('userId')
        if not user_id:
            raise ValueError("userId is required in the request")

        # Set request headers
        headers = {
            'Content-Type': 'application/json',
            'x-api-key': api_key
        }

        # Prepare request payload
        payload = {
            'userId': user_id
        }

        # Make POST request
        response = requests.post(
            api_endpoint,
            headers=headers,
            json=payload,
            timeout=30  # Set timeout for the request
        )

        # Raise exception for bad status codes
        response.raise_for_status()

        return {
            'statusCode': response.status_code,
            'body': response.json()
        }

    except requests.exceptions.RequestException as e:
        logger.error(f"API request failed: {str(e)}")
        return {
            'statusCode': 500,
            'body': json.dumps({'error': 'Failed to make API request'})
        }

    except ValueError as e:
        logger.error(f"Validation error: {str(e)}")
        return {
            'statusCode': 400,
            'body': json.dumps({'error': str(e)})
        }

    except Exception as e:
        logger.error(f"Unexpected error: {str(e)}")
        return {
            'statusCode': 500,
            'body': json.dumps({'error': 'Internal server error'})
        }

It needed some tweaks for my purposes, but was still faster than typing it all out manually!

Step Functions Config

The Lambda: Invoke action defaults to using the state input as the payload, so "Payload": "{% $states.input %}" is scripted automatically:

JSON
    "Lambda Invoke": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Output": "{% $states.result.Payload %}",
      "Arguments": {
        "FunctionName": "[LAMBDA_ARN]:$LATEST",
        "Payload": "{% $states.input %}"
      },
      "Next": "Check API Status Code"
    }

This is going to be helpful in the next section!

Step Functions manages retries and error handling. If my Lambda function fails, it will retry up to three times with exponential backoff before sending a failure notification through SNS:

JSON
    "Lambda Invoke": {
      "Retry": [
        {
          "ErrorEquals": [
            "Lambda.ServiceException",
            "Lambda.AWSLambdaException",
            "Lambda.SdkClientException",
            "Lambda.TooManyRequestsException"
          ],
          "IntervalSeconds": 1,
          "MaxAttempts": 3,
          "BackoffRate": 2,
          "JitterStrategy": "FULL"
        }
      ],
      "Next": "Check API Status Code",
      "Catch": [
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "Next": "SNS Publish: Fail"
        }
      ]
    }

Next, let’s talk about the function’s outputs.

Outputs & JSONata Variables

The Lambda function returns a nested JSON structure. Here’s a redacted example of it:

JSON
{
  "output": {
    "ExecutedVersion": "$LATEST",
    "Payload": {
      "statusCode": 200,
      "body": {
        "make": "FORD",
        "yearOfManufacture": 2014,
        "engineCapacity": 1242,
        "co2Emissions": 120,
        "fuelType": "PETROL",
        "markedForExport": false,
        "colour": "GREY"
      }
    },
    "SdkHttpMetadata": {
      "AllHttpHeaders": {
        "REDACTED": "REDACTED"
      },
      "HttpHeaders": {
        "REDACTED": "REDACTED"
      },
      "HttpStatusCode": 200
    },
    "SdkResponseMetadata": {
      "REDACTED": "REDACTED"
    },
    "StatusCode": 200
  }
}

I mentioned earlier about Lambda: Invoke‘s default Payload setting. This default creates a {% $states.result.Payload %} JSONata expression output that I can use to assign variables for downstream states.

In this example, {% $states.result.Payload %} returns this:

JSON
{
  "Payload": {
      "statusCode": 200,
      "body": {
        "make": "FORD",
        "yearOfManufacture": 2014,
        "engineCapacity": 1242,
        "co2Emissions": 120,
        "fuelType": "PETROL",
        "markedForExport": false,
        "colour": "GREY"
      }
    }
}

Let’s make a variable for statusCode. In the response, statusCode is a property of Payload:

JSON
{
  "Payload": {
      "statusCode": 200
    }
}

In JSONata this is expressed as {% $states.result.Payload.statusCode %}. Then I can assign the JSONata expression to a statusCode variable via JSON. In the AWS console, I do this via:

JSON
{
  "statusCode": "{% $states.result.Payload.statusCode %}"
}

And in Step Functions ASL via:

JSON
"Assign": {"statusCode": "{% $states.result.Payload.statusCode %}"}

I can then call this variable using $statusCode. Here, this will return 200.

Next, let’s make a make variable. This is slightly more involved as make is a property of body, which is itself a property of Payload:

JSON
{
  "Payload": {
      "body": {
        "make": "FORD"
      }
    }
}

So this time I need:

JSON
CONSOLE:
"make": "{% $states.result.Payload.body.make%}"

ASL:
"Assign": {"make": "{% $states.result.Payload.body.make%}"}

And now $make will return "FORD".

So let’s do the other values:

JSON
"Assign": {
    "statusCode": "{% $states.result.Payload.statusCode %}",
    "make": "{% $states.result.Payload.body.make%}",
    "yearOfManufacture": "{% $string($states.result.Payload.body.yearOfManufacture) %}",
    "engineCapacity": "{% $string($states.result.Payload.body.engineCapacity) %}",
    "co2Emissions": "{% $string($states.result.Payload.body.co2Emissions) %}",
    "fuelType": "{% $states.result.Payload.body.fuelType %}",
    "markedForExport": "{% $states.result.Payload.body.markedForExport%}",
    "colour": "{% $states.result.Payload.body.colour%}"
}

Note that variables returning numbers from the response body like yearOfManufacture have an additional $string JSONata expression. I’ll explain the reason for this in the DynamoDB section.

Lambda Issues

When I first started using Step Functions variables, I used a different Lambda function for the API call and kept getting this error:

An error occurred.

The JSONata expression '$states.input.body.make' specified for the field 'Assign/make' returned nothing (undefined).

After getting myself confused, I checked the function’s return statement and found this:

Python
return {
    'statusCode': response.status_code,
    'body': response.text
}

Here, response.text returns the response body as a JSON-formatted string rather than as a nested dictionary:

Plaintext
{
  "statusCode": 200,
  "body": "{\"make\":\"FORD\",\"yearOfManufacture\":2014,\"engineCapacity\":1242,\"co2Emissions\":120,\"fuelType\":\"PETROL\",\"markedForExport\":false,\"colour\":\"GREY\"}"
}

That string isn’t compatible with dot notation. So while $states.input.body will match the whole body, $states.input.body.make can’t match anything because the string can’t be traversed. So nothing is returned, causing the error.

Using response.json() fixes this, as the response is now correctly structured for JSONata expressions:

Python
return {
    'statusCode': response.status_code,
    'body': response.json()
}

Choice State

The Choice state here is very similar to a previous one. This Choice state checks the Lambda function’s API response and routes accordingly.

Here, the Choice state uses the JSONata expression {% $statusCode = 200 %} to check the $statusCode variable value. By default, it will transition to the SNS Publish: Fail state. However, if $statusCode equals 200, then the Choice state will transition to the DynamoDB PutItem state instead:

JSON
    "Check API Status Code": {
      "Type": "Choice",
      "Choices": [
        {
          "Next": "DynamoDB PutItem",
          "Condition": "{% $statusCode = 200 %}"
        }
      ],
      "Default": "SNS Publish: Fail"
    }

This step prevents silent failures by ensuring unsuccessful API responses trigger an SNS notification instead of proceeding to DynamoDB. It also helps maintain data integrity by isolating success and failure paths, and ensuring only valid responses are saved in DynamoDB.

So now I’ve captured the data and confirmed its integrity. Next, let’s store it somewhere!

Amazon DynamoDB

It’s time to think about storing the API data. Enter DynamoDB! This section covers creating a table, writing data and integrating DynamoDB with AWS Step Functions and JSONata. I’ll share key lessons learned, especially about handling data types correctly.

Let’s start by creating a table.

Creating A Table

Before inserting data into DynamoDB, I need to create a table. Since DynamoDB is a schemaless database, all that is required to create a new table is a table name and a primary key. Naming the table is straightforward, so let’s focus on the key.

DynamoDB has two types of key:

  • Partition key (required): Part of the table’s primary key. It’s a hash value that is used to retrieve items from the table and allocate data across hosts for scalability and availability.
  • Sort key (optional): The second part of a table’s primary key. The sort key enables sorting or searching among all items sharing the same partition key.

Let’s look at an example using a Login table. In this table, the user ID serves as the partition key, while the login date acts as the sort key. This structure enables efficient lookups and sorting, allowing quick retrieval of a user’s login history while minimizing operational overhead.

To use a physical analogy, consider the DynamoDB table as a filing cabinet, the Partition key as a drawer, and the Sort key as a folder. If I wanted to retrieve User 123‘s logins for 2025, I would:

  • Access the Logins filing cabinet (DynamoDB table).
  • Find User 123’s drawer (Partition Key).
  • Get User 123’s 2025 folder (Sort Key).

DynamoDB provides many features beyond those discussed here. For the latest features, please refer to the Amazon DynamoDB Developer Guide.

Writing Data

So now I have a table, how do I put data in it?

DynamoDB offers several ways to write data, and a common one is PutItem. This lets me insert or replace an item in my table. Here’s a basic example of adding a login event to a UserLogins table:

JSON
{
    "TableName": "UserLogins",
    "Item": {
        "UserID": { "S": "123" },
        "LoginDate": { "S": "2025-02-25T12:00:00Z" },
        "Device": { "S": "Laptop" }
    }
}

Here:

  • TableName specifies the name of the DynamoDB table where the item will be stored.
  • Item represents the data being inserted into the table. It contains key-value pairs, where the attributes (e.g. UserID) are mapped to their corresponding data types (e.g. "S") and values (e.g. "123").
  • UserID is an attribute in the item being inserted.
  • "S" is a data type descriptor, ensuring that DynamoDB knows how to store and index it.
  • "123" is the value assigned to the UserID attribute.

While DynamoDB is NoSQL, it still enforces strict data types and naming rules to ensure consistency. These are detailed in the DynamoDB Developer Guide, but here’s a quick rundown of supported data types as of March 2025:

  • S – String
  • N – Number
  • B – Binary
  • BOOL – Boolean
  • NULL – Null
  • M – Map
  • L – List
  • SS – String Set
  • NS – Number Set
  • BS – Binary Set

Step Functions Config

So how do I apply this to Step Functions? Well, remember when I set variables in the output of the Lambda function? Step Functions lets me reference those variables here.

Here’s how I store a make attribute in DynamoDB, using my $make variable in a JSONata expression:

JSON
{
    "TableName": "REDACTED",
    "Item": {
        "make": { "S": "{% $make %}" }
    }
}

This is equivalent to:

JSON
{
    "TableName": "REDACTED",
    "Item": {
        "make": { "S": "FORD" }
    }
}

Using JSONata, I can dynamically inject values during execution instead of hardcoding them.

Now let’s add a yearOfManufacture attribute:

JSON
{
    "TableName": "REDACTED",
    "Item": {
        "make": { "S": "{% $make %}" },
        "yearOfManufacture": { "N": "{% $yearOfManufacture %}" }
    }
}

This pattern continues for my other attributes:

JSON
{
  "TableName": "REDACTED",
  "Item": {
    "make": {
      "S": "{% $make %}"
    },
    "yearOfManufacture": {
      "N": "{% $yearOfManufacture%}"
    },
    "engineCapacity": {
      "N": "{% $engineCapacity %}"
    },
    "co2Emissions": {
      "N": "{% $co2Emissions%}"
    },
    "fuelType": {
      "S": "{% $fuelType %}"
    },
    "markedForExport": {
      "BOOL": "{% $markedForExport %}"
    },
    "colour": {
      "S": "{% $colour %}"
    }
  }
}

All this is then passed as an Argument to the DynamoDB: PutItem action in the state machine’s ASL:

JSON
    "DynamoDB PutItem": {
      "Type": "Task",
      "Resource": "arn:aws:states:::dynamodb:putItem",
      "Arguments": {
        "TableName": "REDACTED",
        "Item": {
          "make": {
            "S": "{% $make %}"
          },
          "yearOfManufacture": {
            "N": "{% $yearOfManufacture%}"
          },
          "engineCapacity": {
            "N": "{% $engineCapacity %}"
          },
          "co2Emissions": {
            "N": "{% $co2Emissions%}"
          },
          "fuelType": {
            "S": "{% $fuelType %}"
          },
          "markedForExport": {
            "BOOL": "{% $markedForExport %}"
          },
          "colour": {
            "S": "{% $colour %}"
          }
        }
      }

Finally, DynamoDB:PutAction gets the same error handling as Lambda:Invoke.

So I got all this working first time, right? Well…

DynamoDB Issues

During my first attempts, I got this error:

An error occurred while executing the state 'DynamoDB PutItem'.

The Parameters '{"TableName":"REDACTED","Item":{"make":{"S":"FORD"},"yearOfManufacture":{"N":2014}}}' could not be used to start the Task:

[The value for the field 'N' must be a STRING]

Ok. Not the first time I’ve seen data type problems. I’ll just change the yearOfManufacture data type to "S"(string) and try again…

An error occurred while executing the state 'DynamoDB PutItem'.

The Parameters '{"TableName":"REDACTED","Item":{"make":{"S":"FORD"},"yearOfManufacture":{"S":2014}}}' could not be used to start the Task:

[The value for the field 'S' must be a STRING]

DynamoDB rejected both approaches (╯°□°)╯︵ ┻━┻

The issue wasn’t the data type, but how it was formatted. DynamoDB treats numbers as strings in its JSON-like structure, so even when using numbers they must be wrapped in quotes.

In the case of yearOfManufacture, where I was providing 2014:

Plaintext
"yearOfManufacture": {"N": 2014}

DynamoDB needed "2014":

Plaintext
"yearOfManufacture": {"N": "2014"}

Thankfully, JSONata came to the rescue again! Remember the $string function from the Lambda section? Well, $string casts the given argument to a string!

So this:

JSON
"yearOfManufacture": "{% $states.result.Payload.body.yearOfManufacture %}"

> 2014

Becomes this:

JSON
"yearOfManufacture": "{% $string($states.result.Payload.body.yearOfManufacture) %}"

> "2014"

This solved the problem with no Lambda function changes or additional states!

Amazon SNS

After successfully writing data to DynamoDB, I want to include a confirmation step by sending a notification through Amazon SNS.

While this approach is not recommended for high-volume use cases because of potential costs and notification fatigue, it can be helpful for testing, monitoring, and debugging. Additionally, it offers an opportunity to reuse variables from previous states and dynamically format a message using JSONata.

The goal is to send an email notification like this:

A 2014 GREY FORD has been added to DynamoDB on (current date and time)

To do this, I’ll use:

  • $yearOfManufacture for the vehicle’s year (2014)
  • $colour for the vehicle’s colour (GREY)
  • $make for the manufacturer (FORD)

Plus the JSONata $now() function for the current date and time. This generates a UTC timestamp in ISO 8601-compatible format and returns it as a string. E.g. "2025-02-25T19:12:59.152Z"

So the code will look something like:

A $yearOfManufacture $colour $make has been added to DynamoDB on $now()

Which translates to this JSONata expression:

Plaintext
{% 'A ' & $yearOfManufacture & ' ' & $colour & ' ' & $make & ' has been added to DynamoDB on ' & $now() %}

Let’s analyse each part of the JSONata expression to understand how it builds the final message:

Plaintext
{%

  'A '
& 
  $yearOfManufacture 
& 
  ' ' 
& 
  $colour 
& 
  ' ' 
& 
  $make 
& 
  ' has been added to DynamoDB on ' 
& 
  $now() 
  
%}"

Each part of this expression plays a specific role:

  • ‘A ‘ | ‘ has been added to DynamoDB on ‘: Static strings & spaces.
  • $yearOfManufacture | $colour | $make: Dynamic values.
  • $now(): JSONata function.
  • ‘ ‘: Static spaces to separate JSONata variable outputs.

The static spaces are important! Without them, I’d get this:

2014GREYFORD

Instead of the expected:

2014 GREY FORD

This JSONata expression is passed as the Message argument in the SNS:Publish action, ensuring the notification contains the correctly formatted message:

JSON
"Message": "{% 'A ' & $yearOfManufacture & ' ' & $colour & ' ' & $make & ' has been added to DynamoDB on ' & $now() %}"

Finally, to integrate this with Step Functions it is included in the SNS Publish: Success task ASL:

JSON
"SNS Publish: Success": {
    "Type": "Task",
    "Resource": "arn:aws:states:::sns:publish",
    "Arguments": {
      "Message": "{% 'A ' & $yearOfManufacture & ' ' & $colour & ' ' & $make & ' has been added to DynamoDB on ' & $now() %}",
      "TopicArn": "arn:aws:sns:REDACTED:success-stepfunction"
}

Final Workflow

Finally, let’s see what the workflows look like. Here’s the workflow graph:

stepfunctions graph

And here’s the workflow ASL on GitHub.

Testing

In this section, I run some test executions against my simplified Step Functions workflow and check the variables. I’ll test four requests – two valid and two invalid.

Valid Request: Ford

Firstly, what happens when a valid API request is made and everything works as expected?

The Step Functions execution succeeds:

stepfunctions graph testsuccess

Each state completes successfully:

2025 02 26 StateViewSuccess

My DynamoDB table now contains one item:

2025 02 26 DyDBTable1

I receive a confirmation email from SNS:

2025 02 26 SNSSuccessFord

If I send the same request again, the existing DynamoDB item is overwritten because the primary key remains the same.

Valid Request: Audi

Next, what happens if I make a valid request for a different car? The steps repeat as above, and my DynamoDB table now has two items:

2025 02 26 DyDBTable2

And I get a different email:

2025 02 26 SNSSuccessAudi

Invalid Request

Next, what happens if the car in my request doesn’t exist? Well, it does fail, but in an unexpected way:

stepfunctions graphfail

The API returns an error response:

JSON
"Payload": {
      "statusCode": 500,
      "body": "{\"error\": \"API request failed: 400 Client Error: Bad Request for url"}"
    }

I’d expected the response to be passed to the Choice state, which would then notice the 500 status code and start the Fail process. But this happened instead:

2025 02 26 StateViewFail

The failure occurs at the assignment of the Lambda action variable! It attempts to assign a yearOfManufacture value from the API response body to a variable, but since there is no response body the assignment fails:

JSON
{
  "cause": "An error occurred while executing the state 'Lambda Invoke' (entered at the event id #2). The JSONata expression '$states.result.Payload.body.yearOfManufacture ' specified for the field 'Assign/yearOfManufacture ' returned nothing (undefined).",
  "error": "States.QueryEvaluationError",
  "location": "Assign/registrationNumber",
  "state": "Lambda Invoke"
}

I also get an email, but this one is less fancy as it just dumps the whole output:

2025 02 26 SNSFail

So I still get my Fail outcome – just not in the expected way. Despite this, the Choice state remains valuable for preventing invalid data from entering DynamoDB.

No Request

Finally, what happens if no data is passed to the state machine at all?

Actually, this situation is very similar to the invalid request! There’s a different error message in the log:

JSON
"Payload": {
      "statusCode": 400,
      "body": "{\"error\": \"Registration number not provided\"}"
    }

But otherwise it’s the same events and outcome. The Lambda variable assignment fails, triggering an SNS email and an ExecutionFailed result.

Cost Analysis

This section examines the costs of my simplified Step Functions variables workflow. This section is brief since all services used in this workflow fall within the AWS Free Tier! For transparency, I’ll include my billing metrics for the month. These are account-wide, and I’m still nowhere near paying AWS anything!

DynamoDB:

$0.1415 per million read request units (EU (Ireland))30.5 ReadRequestUnits
$0.705 per million write request units (EU (Ireland))13 WriteRequestUnits

Lambda:

AWS Lambda – Compute Free Tier – 400,000 GB-Seconds – EU (Ireland)76.219 Second
AWS Lambda – Requests Free Tier – 1,000,000 Requests – EU (Ireland)110 Request

SNS:

First 1,000 Amazon SNS Email/Email-JSON Notifications per month are free19 Notifications
First 1,000,000 Amazon SNS API Requests per month are free289 Requests

Step Functions:

$0 for first 4,000 state transitions431 StateTransitions

This experiment demonstrates how cost-effective Step Functions can be. As long as my usage remains within the Free Tier, I pay nothing! If my workflow grows, I’ll monitor costs and optimise accordingly.

Summary

In this post, I used AWS Step Functions variables and JSONata to create a simplified API data capture workflow with Lambda and DynamoDB.

With a background in SQL and Python, I’m no stranger to variables, and I love that they’re now a native part of Step Functions. AWS keeps enhancing Step Functions every few months, making it more powerful and versatile. The introduction of variables unlocks new possibilities for data manipulation, serverless applications and event-driven workflows, and I’m excited to explore them further in the coming months!

For a visual walkthrough of Step Functions variables and JSONata, check out this Serverless Office Hours episode with AWS Principal Developer Advocates Eric Johnson and Julian Wood:

If this post has been useful then the button below has links for contact, socials, projects and sessions:

SharkLinkButton 1

Thanks for reading ~~^~~

Categories
Developing & Application Integration

WordPress Bronze Data Orchestration With AWS

In this post, I create my WordPress pipeline’s bronze data orchestration process using AWS Lambda layers and AWS Step Functions.

Table of Contents

Introduction

In recent posts, I’ve written a Python script to extract WordPress API data and automated the script’s invocation with AWS services. This script creates five JSON objects in an S3 bucket at 07:00 each morning.

Now, I want to transform the data from semi-structured raw JSON into a more structured and query-friendly ‘bronze’ format to prepare it for downstream partitioning, cleansing and filtration.

Firstly, I’ll cover the additions and changes to my pipeline architecture. Next, I’ll examine both my new bronze Python function and the changes made to the existing raw function.

Finally, I’ll deploy the bronze script to AWS Lambda and create my WordPress pipeline orchestration process with AWS Step Functions. This process will ensure both Lambdas run in a set order each day.

Let’s start by examining my latest architectural decisions.

Architectural Decisions

In this section, I examine my architectural decisions for the bronze AWS Lambda function and the WordPress pipeline orchestration. Note that these decisions are in addition to my previous ones here and here.

AWS SDK For pandas

AWS SDK For pandas is an open-source Python initiative using the pandas library. It integrates with AWS services including Athena, Glue, Redshift, DynamoDB and S3, offering abstracted functions to execute various data processes.

AWS SDK For pandas used to be called awswrangler until AWS renamed it for clarity. It now exists as AWS SDK For pandas in documentation and awswrangler in code.

AWS Lambda Layers

A Lambda layer is an archive containing code like libraries, dependencies, or custom runtimes. Layers can be both created manually and provided by AWS and third parties. Each Lambda function can include up to five layers.

Layers can be shared between functions, reducing code duplication and package sizes. This reduces storage costs and lets the smaller packages deploy markedly faster. Layers also separate dependencies from function code, supporting decoupling and separation of concerns.

AWS Step Functions

AWS Step Functions is a serverless orchestration service that integrates with other AWS services to build application workflows as a series of event-driven steps. For example, chaining Athena queries and ML model training.

Central to the Step Functions service are the concepts of States and State Machines:

  • States represent single steps or tasks in a workflow, and can be one of several types. The Step Functions Developer Guide has a full list of states.

The AWS Step Functions Developer Guide’s welcome page has more details including workflow types, use cases and a variety of sample projects.

Apache Parquet

Onto the data architecture! Let’s start by choosing a structured file type for the bronze data:

Apache Parquet is an open source, column-oriented data file format designed for efficient data storage and retrieval. It provides efficient data compression and encoding schemes with enhanced performance to handle complex data in bulk.

Databricks: What is Parquet?

There’s a more detailed explanation in the Parquet documentation too. So why choose Parquet over something like CSV? Well:

  • Size: Parquet supports highly efficient compression, so files take up less space and are cheaper to store than CSVs.
  • Performance: Parquet files store metadata about the data they hold. Query engines can use this metadata to find only the data needed, whereas with CSVs the whole file must be read first. This reduces the amount of processed data and enhances query performance.
  • Compatibility: Parquet is an open standard supported by various data processing frameworks including Apache Spark, Apache Hive and Presto. This means that data stored in Parquet format can be read and processed across many platforms and services.

Data Lakehouse

A Data Lakehouse is an emerging data architecture combining the centralized storage of raw data synonymous with Data Lakes with the transactional and analytical processing associated with Data Warehouses.

The result is a unified platform for efficient data management, analytics, and insights. Lakehouses have gained popularity as cloud services increasingly support them, with AWS, Azure and GCP all providing Lakehouse services.

This segues neatly into…

Medallion Architecture

Medallion Architecture is a data design pattern for logically organizing data in a Lakehouse. It aims to improve data quality as it flows through various layers incrementally. Names for these layers vary, tending to be Bronze, Silver, and Gold.

Implementations of the Medallion Architecture also vary. I like this Advancing Analytics video, which maps the Medallion Architecture to their approach. Despite the title it’s not a negative video, instead outlining how the three layers don’t necessarily fit every use case.

I’m using Raw and Bronze layers here because they best fit what I’m doing with my data.

Architectural Updates

In this section, I examine the changes made to my existing architecture.

Amazon S3

I’ve created a new data-lakehouse-bronze s3 bucket in the same region as the data-lakehouse-raw bucket to separate the two data layers.

Why use two buckets instead of one bucket with two prefixes? Well, after much research I’ve not found a right or wrong answer for this. There’s no difference in cost, performance or availability as long as all objects are stored in the same AWS region.

I chose two buckets because I find it easier to manage multiple buckets with flat structures and small bucket policies, as opposed to single buckets with deep structures and large bucket policies.

The truest answer is ‘it depends’, as other factors can come into play like:

  • Data Sovereignty: S3 bucket prefixes exist in the same region as the parent bucket. Regulations like GDPR and CCPA may require using separate buckets in order to isolate data within designated locations.

AWS SNS

I previously had two standard SNS Topics:

  • wordpress-api-raw for Lambda function alerts
  • failure-lambda for Lambda Destination alerts.

Firstly, there’s now an additional failure-stepfunction topic for any state machine failures.

Secondly, I’ve replaced my wordpress-api-raw topic with a data-lakehouse-raw topic to simplify my alerting channels and allow resource reuse. I’ve also created a new data-lakehouse-bronze topic for bronze process alerts.

Why two data topics? Well, different teams and services care about different things. A bronze-level failure may only concern the Data Engineering team as no other teams consume the data. Conversely, a gold-level failure will concern the AI and MI teams as it impacts their models and reports. Having separate SNS topics for each layer type enables granular monitoring controls.

AWS Parameter Store

Finally, Parameter Store needs the new S3 bucket name and SNS ARNs. I’ve replaced the /sns/pipeline/wordpressapi/raw parameter with /sns/data/lakehouse/raw to preserve the name schema.

I’m now storing five parameters:

  • 2x S3 Bucket names (Raw and Bronze)
  • 2x SNS Topic ARNs (Raw and Bronze notifications)
  • WordPress API Endpoints (unchanged)

Architectural Diagram

There are two diagrams this time! Firstly, here is the data_wordpressapi_bronze AWS Lambda function:

Where:

  1. AWS Lambda calls Parameter Store for S3 and SNS parameters. Parameter Store returns these to AWS Lambda.
  2. Lambda function gets raw WordPress JSON data from S3 Raw Bucket.
  3. Lambda function transforms the raw WordPress JSON data to bronze WordPress Parquet data and puts the new object in the S3 Bronze Bucket.

Meanwhile, Lambda is writing to a CloudWatch Log Group throughout its invocation. If there’s a failure, the Lambda function publishes a message to an SNS topic. SNS then delivers this message to the user’s subscribed email address.

Next, this is the AWS Step Functions WordPress bronze orchestration process:

Where:

  1. EventBridge Schedule invokes the State Machine.
  2. State Machine invokes the Raw Lambda function.
  3. State Machine invokes the Bronze Lambda function.

The State Machine also has its own logging and alerting channels.

Python

In this section, I work on my raw and bronze Python scripts for the WordPress pipeline orchestration process.

Raw Script Updates

I try to update my existing resources when I find something pertinent online. My latest find was this Indently video that covers, amongst other things, type annotations:

So how are type annotations different from type hints? Type annotations were released in 2006 and aimed to standardize function parameters and return value annotation. Type hints (released in 2014) then added updated definitions and conventions to enrich type annotations further.

The type hints PEP shows this difference between the two:

When used in a type hint, the expression None is considered equivalent to type(None)

https://peps.python.org/pep-0484/#using-none

So in this function:

Python
def send_email(name: str, message: str) -> None:
  • name: str is an example of type annotation because the parameter name is of type string.
  • -> None is an example of a type hint because although None isn’t a type, it confirms that the function has no output.

So what’s changed in my raw script?

Updated Import & Functions

Let’s open with a new import:

Python
from botocore.client import BaseClient

BaseClient serves as a foundational base class for AWS service clients within botocore – a low-level library providing the core functionality of boto3 (the AWS Python SDK) and the AWS CLI.

I’m using it here to add type annotations to my boto3 clients. For example, send_sns_message already had these annotations:

Python
def send_sns_message(sns_client, topic_arn: str, subject:str, message: str):

I’ve now annotated sns_client with BaseClient to indicate its boto3 relation. I’ve also added a -> None type hint to confirm the function has no output:

Python
def send_sns_message(sns_client: BaseClient, topic_arn: str, subject:str, message: str) -> None:

Elsewhere, I’ve added the BaseClient annotation to get_parameter_from_ssm‘s ssm_client parameter:

Python
def get_parameter_from_ssm(ssm_client: BaseClient, parameter_name: str) -> str:

And put_s3_object‘s s3_client parameter:

Python
def put_s3_object(s3_client: BaseClient, bucket: str, prefix:str, name: str, json_data: str, suffix: str) -> bool:

put_s3_object also has new prefix and suffix parameters. Before this, it was hard-coded to create JSON objects in a wordpress-api S3 prefix:

Python
    try:
        logging.info(f"Attempting to put {name} data in {bucket} bucket...")
        s3_client.put_object(
            Body = json_data,
            Bucket = bucket,
            Key = f"wordpress-api/{name}.json"
        )

Not any more! The S3 prefix and object suffix can now be changed dynamically:

Python
    try:
        logging.info(f"Attempting to put {name} data in {bucket} bucket's {prefix}/{name} prefix...")
        s3_client.put_object(
            Body = json_data,
            Bucket = bucket,
            Key = f"{prefix}/{name}/{name}.{suffix}"
        )

This improves put_s3_object‘s reusability as I can now pass any prefix and suffix to it during a function call. For example, this call creates a JSON object:

Python
ok = put_s3_object(client_s3, s3_bucket, data_source, object_name, api_json_string, 'json')

While this creates a CSV object:

Python
ok = put_s3_object(client_s3, s3_bucket, data_source, object_name, api_json_string, 'csv')

Likewise, this creates a TXT object:

Python
ok = put_s3_object(client_s3, s3_bucket, data_source, object_name, api_json_string, 'txt')

I can also set data_source (which I’ll cover shortly) to any S3 prefix, giving total control over where the object is stored.

Updated Variables

Next, some of my variables need to change. My SNS parameter name needs updating from:

Python
# AWS Parameter Store Names
parametername_s3bucket = '/s3/lakehouse/name/raw'
parametername_snstopic = '/sns/pipeline/wordpressapi/raw'
parametername_wordpressapi = '/wordpress/amazonwebshark/api/mysqlendpoints'

To:

Python
# AWS Parameter Store Names
parametername_s3bucket = '/s3/lakehouse/name/raw'
parametername_snstopic = '/sns/data/lakehouse/raw'
parametername_wordpressapi = '/wordpress/amazonwebshark/api/mysqlendpoints'

I also need to lay the groundwork for put_s3_object‘s new prefix parameter. I used to have a lambdaname variable that was used in the logs:

Python
# Lambda name for messages
lambdaname = 'data_wordpressapi_raw'

I’ve replaced this with two new variables. data_source records the data’s origin, which matches my S3 prefix naming schema. function_name then adds context to data_source to match my Lambda function naming schema:

Python
# Lambda name for messages
data_source = 'wordpress_api'
function_name = f'data_{data_source}_raw'

data_source is then passed to the put_s3_object function call when creating raw objects:

Python
ok = put_s3_object(client_s3, s3_bucket, data_source, object_name, api_json_string)

While function_name is used in the logs when referring to the Lambda function:

Python
    # Check an S3 bucket has been returned.
    if not s3_bucket_raw:
        message = f"{function_name}: No S3 Raw bucket returned."
        subject = f"{function_name}: Failed"

Updated Script Body

My variables all now have type annotations. They’ve gone from:

Python
    # AWS Parameter Store Names
    parametername_s3bucket = '/s3/lakehouse/name/raw'
    parametername_snstopic = '/sns/data/lakehouse/raw'
    parametername_wordpressapi = '/wordpress/amazonwebshark/api/mysqlendpoints'

    # Lambda name for messages
    data_source = 'wordpress_api'
    function_name = f'data_{data_source}_raw'

    # Counters
    api_call_timeout = 30
    endpoint_count_all = 0
    endpoint_count_failure = 0
    endpoint_count_success = 0

To:

Python
    # AWS Parameter Store Names
    parametername_s3bucket: str = '/s3/lakehouse/name/raw'
    parametername_snstopic: str = '/sns/data/lakehouse/raw'
    parametername_wordpressapi: str = '/wordpress/amazonwebshark/api/mysqlendpoints'

    # Lambda name for messages
    data_source: str = 'wordpress_api'
    function_name: str = f'data_{data_source}_raw'

    # Counters
    api_call_timeout: int = 30
    endpoint_count_all: int = 0
    endpoint_count_failure: int = 0
    endpoint_count_success: int = 0

This is helpful when the variables are passed in from settings files or external services and are not immediately apparent. So a good habit to get into!

Bronze Script

Now let’s talk about the new script, which transforms raw S3 JSON objects into bronze S3 Parquet objects. Both raw and bronze WordPress scripts will then feed into an AWS orchestration workflow.

Reused Raw Functions

The following functions are re-used from the Raw script with no changes:

Get Filename Function

Here, I want to get each S3 path’s object name. The object name has some important uses:

  • Using it instead of the full S3 path makes the logs easier to read and cheaper to store.
  • Using it during bronze S3 object creation ensures consistent naming.

A typical S3 path has the schema s3://bucket/prefix/object.suffix, from which I want object.

This function is a remake of the raw script’s Get Filename function. This time, the source string is an S3 path instead of an API endpoint:

I define a get_objectname_from_s3_path function, which expects a path argument with a string type hint and returns a new string.

Firstly, my name_full variable uses the rsplit method to capture the substring I need, using forward slashes as separators. This converts s3://bucket/prefix/object.suffix to object.suffix.

Next, my name_full_last_period_index variable uses the rfind method to find the last occurrence of the period character in the name_full string.

Finally, my name_partial variable uses slicing to extract a substring from the beginning of the name_full string up to (but not including) the index specified by name_full_last_period_index. This converts object.suffix to object.

If the function cannot return a string, an exception is logged and a blank string is returned instead.

Get Data Function

Next, I want to read data from an S3 JSON object in my Raw bucket and store it in a pandas DataFrame.

Here, I define a get_data_from_s3_object function that returns a pandas DataFrame and expects three arguments:

  • boto3_session: the authenticated session to use with a BaseClient type hint.
  • s3_object: the S3 object path with a string type hint.
  • name: the S3 object name with a string type hint (used for logging).

This function uses AWS SDK For pandas s3.read_json to read the data from the S3 object path using the existing boto3_session authentication.

If data is found then get_data_from_s3_object returns a populated DataFrame. Otherwise, an empty DataFrame is returned instead.

Put Data Function

Finally, I want to convert the DataFrame to Parquet and store it in my bronze S3 bucket.

I define a put_s3_parquet_object function that expects four arguments:

  • df: the pandas DataFrame containing the raw data.
  • name: the S3 object name.
  • s3_object_bronze: the S3 path for the new bronze object
  • session: the authenticated boto3 session to use.

I give string type hints to the name and s3_object_bronze parameters. session gets the same BaseClient hint as before, and df is identified as a pandas DataFrame.

I open a try except block that uses s3.to_parquet with the existing boto3_session to upload the DataFrame data to S3 as a Parquet object. If this operation succeeds, the function returns True. If it fails, a botocore exception is logged and the function returns False.

Imports & Variables

The bronze script has two new imports to examine: awswrangler and pandas:

Python
import logging
import boto3
import botocore
import awswrangler as wr
import pandas as pd
from botocore.client import BaseClient

I’ve used both before. Here, pandas handles my in-memory data storage and awswrangler handles my S3 interactions.

There are also parameter changes. I’ve added Parameter Store names for both the bronze S3 bucket and the SNS topic. I’ve kept the raw S3 bucket parameter as awswrangler needs it for the get_data_from_s3_object function.

Python
parametername_s3bucket_raw: str = '/s3/lakehouse/name/raw'
parametername_s3bucket_bronze: str = '/s3/lakehouse/name/bronze'
parametername_snstopic: str = '/sns/data/lakehouse/bronze'

I’ve also swapped out _raw for _bronze in function_name, and renamed the counters from endpoint_count to object_count to reflect their new function:

Python
    # Lambda name for messages
    data_source: str = 'wordpress_api'
    function_name: str = f'data_{data_source}_bronze'

    # Counters
    object_count_all: int = 0
    object_count_failure: int = 0
    object_count_success: int = 0

Script Body

Most of the bronze script is reused from the raw script. Tasks like logging config, name parsing and validation checks only needed the updated parameters! There are some changes though, as S3 is now my data source and I’m also doing additional tasks.

Firstly, I need to get the raw S3 objects. The AWS SDK For pandas S3 class has a list_objects function which is purpose-built for this:

Python
s3_objects_raw = wr.s3.list_objects(
      path = f's3://{s3_bucket_raw}/{data_source}',
      suffix = 'json',
      boto3_session = session)
  • path is the S3 location to list – in this case the raw S3 bucket’s wordpress_api prefix.
  • suffix filters the list by the specified suffix.
  • boto3_session specifies my existing boto3_session to prevent unnecessary re-authentication.

During the loop, my script checks if the pandas DataFrame returned from get_data_from_s3_object contains data. If it’s empty then the loop ends, otherwise the column and row counts are logged:

Python
if df.empty:
  logging.warning(f"{object_name} DataFrame is empty!")
  endpoint_count_failure += 1
  continue
  
logging.info(f'{object_name} DataFrame has {len(df.columns)} columns and {len(df)} rows.')

Assuming all checks succeed, I want to put a new Parquet object into my bronze S3 bucket. AWS SDK For pandas has an s3.to_parquet function that does this using a pandas DataFrame and an S3 path.

I already have the DataFrame so let’s make the path. This is done by the s3_object_bronze parameter, which joins existing parameters with additional characters. This is then passed to put_s3_parquet_object:

Python
s3_object_bronze = f's3://{s3_bucket_bronze}/{data_source}/{object_name}/{object_name}.parquet'

logging.info(f"Attempting {object_name} S3 Bronze upload...")
ok = put_s3_parquet_object(df, object_name, s3_object_bronze, session)

That’s the bronze script done. Now to deploy it to AWS Lambda.

Lambda

In this section, I configure and deploy my Bronze Lambda function.

Hitting Size Limits

So, remember when I said that I expected my future Lambda deployments to improve? Well, this was the result of my retrying the virtual environment deployment process the Raw Lambda used:

2024 03 08 LambdaError

While my zipped raw function is 19.1 MB, my zipped bronze function is over five times bigger at 101.6 MB! My poorly optimised package wouldn’t cut it this time, so I prepared for some pruning. Until I discovered something…

Using A Layer

There’s a managed AWS SDK for pandas Lambda layer!

2024 03 05 LayerAWSSDKPandas

It can be selected in the Lambda console or programmatically called from this list of AWS SDK for pandas Managed Layer ARNs, which covers:

  • All AWS commercial regions.
  • All Python versions currently supported by Lambda (currently 3.8+)
  • Both Lambda architectures.

Additionally, the Lambda Python 3.12 runtime includes boto3 and botocore. So by using this runtime and the managed layer, I’ve gone from a large deployment package to no deployment package! And because my function is now basically just code, I can view and edit that code in the Lambda console directly.

Lambda Config

My Bronze Lambda function borrows several config settings from the raw one, including:

Where it differs is the IAM setup. I needed additional permissions anyway because this function is reading from two S3 buckets now, but by the time I was done the policy was hard to read, maintain and troubleshoot:

JSON
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "s3:PutObject",
                "s3:GetObject",
                "sns:Publish",
                "s3:ListBucket",
                "logs:CreateLogGroup"
            ],
            "Resource": [
                "arn:aws:s3:::data-lakehouse-raw/wordpress_api/*",
                "arn:aws:s3:::data-lakehouse-bronze/wordpress_api/*",
                "arn:aws:s3:::data-lakehouse-raw",
                "arn:aws:s3:::data-lakehouse-bronze",
                "arn:aws:logs:eu-west-1:REDACTED:*",
                "arn:aws:sns:eu-west-1:REDACTED:data-lakehouse-raw",
                "arn:aws:sns:eu-west-1:REDACTED:data-lakehouse-bronze"
            ]
        },
        {
            "Sid": "VisualEditor1",
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogStream",
                "logs:PutLogEvents",
                "ssm:GetParameter"
            ],
            "Resource": [
                "arn:aws:logs:eu-west-1:REDACTED:log-group:/aws/lambda/data_wordpressapi_bronze:*",
                "arn:aws:ssm:eu-west-1:REDACTED:parameter/s3/lakehouse/name/raw",
                "arn:aws:ssm:eu-west-1:REDACTED:parameter/s3/lakehouse/name/bronze",
                "arn:aws:ssm:eu-west-1:REDACTED:parameter/sns/data/lakehouse/raw",
                "arn:aws:ssm:eu-west-1:REDACTED:parameter/sns/data/lakehouse/bronze"
            ]
        }
    ]
}

So let’s refactor it! The below policy has the same actions, grouped by service and with appropriately named Sids:

JSON
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "CloudWatchLogGroupActions",
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogGroup"
            ],
            "Resource": [
                "arn:aws:logs:eu-west-1:REDACTED:*"
            ]
        },
        {
            "Sid": "CloudWatchLogStreamActions",
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogStream",
                "logs:PutLogEvents"
            ],
            "Resource": [
                "arn:aws:logs:eu-west-1:REDACTED:log-group:/aws/lambda/data_wordpressapi_bronze:*"
            ]
        },
        {
            "Sid": "S3BucketActions",
            "Effect": "Allow",
            "Action": [
                "s3:ListBucket"
            ],
            "Resource": [
                "arn:aws:s3:::data-lakehouse-raw",
                "arn:aws:s3:::data-lakehouse-bronze"
            ]
        },
        {
            "Sid": "S3ObjectActions",
            "Effect": "Allow",
            "Action": [
                "s3:PutObject",
                "s3:GetObject"
            ],
            "Resource": [
                "arn:aws:s3:::data-lakehouse-raw/wordpress_api/*",
                "arn:aws:s3:::data-lakehouse-bronze/wordpress_api/*"
            ]
        },
        {
            "Sid": "SNSActions",
            "Effect": "Allow",
            "Action": [
                "sns:Publish"
            ],
            "Resource": [
                "arn:aws:sns:eu-west-1:REDACTED:data-lakehouse-bronze"
            ]
        },
        {
            "Sid": "ParameterStoreActions",
            "Effect": "Allow",
            "Action": [
                "ssm:GetParameter"
            ],
            "Resource": [
                "arn:aws:ssm:eu-west-1:REDACTED:parameter/s3/lakehouse/name/raw",
                "arn:aws:ssm:eu-west-1:REDACTED:parameter/s3/lakehouse/name/bronze",
                "arn:aws:ssm:eu-west-1:REDACTED:parameter/sns/data/lakehouse/bronze"
            ]
        }
    ]
}

Much better! This policy is now far easier to read and update.

There’s also a clear distinction between the bucket-level s3:ListBucket operation and the object-level s3:PutObject and s3:GetObject operations now. Getting these wrong can have big consequences, so the clearer the better!

One deployment and test later, and I have some new S3 objects!

[INFO]: WordPress API Bronze process complete: 5 Successful | 0 Failed.

REPORT RequestId: 899d1658-f7de-4e74-8d64-b4f029fe2bec	Duration: 7108.50 ms	Billed Duration: 7109 ms	Memory Size: 250 MB	Max Memory Used: 250 MB	Init Duration: 4747.38 ms

So now I have two Lambda functions with some requirements around them:

  • They need to run sequentially.
  • The Raw Lambda must finish before the Bronze Lambda starts.
  • If the Raw Lambda fails then the Bronze Lambda shouldn’t run at all.

Now that AWS Lambda is creating WordPress raw and bronze objects, it’s time to start thinking about orchestration!

Step Functions & EventBridge

In this section, I create both an AWS Step Functions State Machine and an Amazon EventBridge Schedule for my WordPress bronze orchestration process.

State Machine Requirements

Before writing any code, let’s outline the steps I need the state machine to perform:

  1. data_wordpressapi_raw Lambda function is invoked. If it succeeds then move to the next step. If it fails then send a notification and end the workflow reporting failure.
  2. data_wordpressapi_bronze Lambda function is invoked. If it succeeds then end the workflow reporting success. If it fails then send a notification and end the workflow reporting failure.

With the states defined, it’s time to create the state machine.

State Machine Creation

The following state machine was created using Step Functions Workflow Studio – a low-code visual designer released in 2021, with drag-and-drop functionality that auto-generates code in real-time:

Workflow Studio produced this section’s code and diagrams.

Firstly I create a data_wordpressapi_raw task state to invoke my Raw Lambda. This task uses the lambda:invoke action to invoke my data_wordpressapi_raw function. I set the next state as data_wordpressapi_bronze and add a Catch block that sends all errors to a PublishFailure state (which I’ll define later):

JSON
    "data_wordpressapi_raw": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "Payload.$": "$",
        "FunctionName": "arn:aws:lambda:eu-west-1:REDACTED:function:data_wordpressapi_raw:$LATEST"
      },
      "Next": "data_wordpressapi_bronze",
      "Catch": [
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "ResultPath": "$.Error",
          "Next": "PublishFailure"
        }
      ],
      "TimeoutSeconds": 120
    }

Note the TimeoutSeconds parameter. All my task states will have 120-second timeouts. These stop the state machine from waiting indefinitely if the task becomes unresponsive, and are recommended best practice. Also note that state machines wait for Lambda invocations to finish by default, so no additional config is needed for this.

Next, I create a data_wordpressapi_bronze task state to invoke my Bronze Lambda. This task uses the lambda:invoke action to invoke my data_wordpressapi_bronze function. I then add a Catch block that sends all errors to a PublishFailure state.

Finally, "End": true designates this state as a terminal state which ends the execution if the task is successful:

JSON
    "data_wordpressapi_bronze": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "Payload.$": "$",
        "FunctionName": "arn:aws:lambda:eu-west-1:973122011240:function:data_wordpressapi_bronze:$LATEST"
      },
      "Catch": [
        {
          "ErrorEquals": [
            "States.ALL"
          ],
          "ResultPath": "$.Error",
          "Next": "PublishFailure"
        }
      ],
      "TimeoutSeconds": 120,
      "End": true
    }

Finally, I create a PublishFailure task state that publishes failure notifications. This task uses the sns:Publish action to publish a simple message to the failure-stepfunction SNS Topic ARN. "End": true marks this task as the other potential way the state machine execution can end:

JSON
    "PublishFailure": {
      "Type": "Task",
      "Resource": "arn:aws:states:::sns:publish",
      "Parameters": {
        "TopicArn": "arn:aws:sns:eu-west-1:REDACTED:failure-stepfunction",
        "Message": "An error occurred in the state machine: { \"error\": \"$.Error\" }"
      },
      "End": true,
      "TimeoutSeconds": 120
    }

While both Lambdas already have SNS alerting, the state machine itself may also fail so the added observability is justified. This Marcia Villalba video was very helpful here:

And that’s everything I need! At this point Wordflow Studio gives me two things – firstly the state machine’s code, which I’ve committed to GitHub. And secondly this handy downloadable diagram:

stepfunctions graph

State Machine Config

It’s now time to think about security and monitoring.

When new state machines are created in the AWS Step Functions console, an IAM Role is created with policies based on the state machine’s resources. The nuances and templates are covered in the Step Functions Developer Guide, so let’s examine my WordPress_Raw_To_Bronze state machine’s auto-generated IAM Role consisting of two policies:

JSON
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "xray:PutTraceSegments",
                "xray:PutTelemetryRecords",
                "xray:GetSamplingRules",
                "xray:GetSamplingTargets"
            ],
            "Resource": [
                "*"
            ]
        }
    ]
}

This supports the AWS X-Ray integration with AWS Step Functions. If X-Ray trancing is never enabled then this policy is unused.

Besides X-Ray tracing, there is also an option to log a state machine’s execution history to CloudWatch Logs. There are three log levels available plus a fourth default choice: OFF. Each state machine retains recent execution history and I’ve got no need to keep that history long-term, so I leave the log retention disabled. Remember – CloudWatch Logs is only free for the first 5GB!

State Machine Testing

There are various ways to test a state machine. There’s a testing and debugging section in the developer guide that goes into further details, the three main options being:

I’ll focus on console testing here.

Both individual states and the entire state machine can be tested in the console. Each state can be tested in isolation (using the TestState API under the hood) with customisable inputs and IAM roles. This is great for checking the state outputs are correct, and that the attached IAM role is sufficient.

The state machine itself can also be tested via on-demand execution. The Execution Details page shows the state machine’s statistics and events, and has great coverage in the developer guide.

During testing, my WordPress_Raw_To_Bronze state machine returned this error:

States.Runtime in step: data_wordpressapi_bronze.

An error occurred while executing the state 'data_wordpressapi_bronze' (entered at the event id #7). Unable to apply Path transformation to null or empty input.

This turned out to be a problem with the OutputPath parameter, which Wordflow Studio enables by default:

2024 03 04 StepFunctionsOutPutPath

I’m not using this setting for anything, so I disabled it to solve this problem.

Eventbridge Schedule

Finally, I want to automate the execution of my state machine. This calls for an EventBridge Schedule!

EventBridge makes this quite simple, using mostly the same process as last time. The Step Functions StartExecution operation is a templated target like Lambda’s Invoke operation, so it’s a case of selecting the WordPress_Raw_To_Bronze state machine from the list and updating the schedule’s IAM role accordingly.

And that’s it! EventBridge now executes the state machine at 07:00 each morning. The state machine then sequentially invokes both Lambda functions and catches any errors.

Costs

In this section, I’ll examine my recent AWS WordPress bronze orchestration process costs.

Let’s start with Step Functions. There are two kinds of Step Function workflow:

  • Standard workflows are charged based on the number of state transitions. These are counted each time a workflow step is executed. The first 4000 transitions each month are free. After that, every 1000 transitions cost $0.025.
  • Express workflows are priced by the number of executions, duration, and memory consumption. The specifics of these criteria, coupled with full details of all charges are on the Step Functions pricing page.

I’m using standard workflows, and as of 26 March I’ve used 118 state transitions. In other words, free! Elsewhere, my costs are broadly on par with previous months. These are my S3 costs from 2024-02-01 to 2024-03-26:

S3 ActionsMonthUsageCost
PUT, COPY, POST, or LIST requests2024-0264,1960.32
PUT, COPY, POST, or LIST requests2024-0317,5660.09
GET and all other requests2024-02101,4620.04
GET and all other requests2024-038,6560.00
GB month of storage used2024-020.1090.00
GB month of storage used2024-030.1610.00

And this is my recent free tier usage from 2024-02-01 to 2024-03-26:

ServiceMonthUsage
EventBridge2024-0231 Invocations
EventBridge2024-0325 Invocations
Lambda2024-02122.563 Second Compute
Lambda2024-0284 Requests
Lambda2024-0382.376 Second Compute
Lambda2024-0358 Requests
Parameter Store2024-0234 API Requests
Parameter Store2024-0325 API Requests
SNS2024-028 Email-JSON Notifications
SNS2024-02438 API Requests
SNS2024-033 Email-JSON Notifications
SNS2024-03205 API Requests

So my only costs are still for storage.

Resources

The following items have been checked into the amazonwebshark GitHub repo for the AWS WordPress bronze orchestration process, available via the button below:

  • Updated data_wordpressapi_raw Python script & requirements.txt file.
  • New data_wordpressapi_bronze Python script & requirements.txt file.
  • WordPress_Raw_To_Bronze state machine JSON.
GitHub-BannerSmall

Summary

In this post, I created my WordPress pipeline’s bronze data orchestration process using AWS Lambda layers and AWS Step Functions.

I’ve wanted to try Step Functions out for a while, and all things considered they’re great! Workflow Studio is easy to use, and the templates and tutorials undoubtedly highlight the value that Step Functions can bring.

Additionally, the integration with both EventBridge Scheduler and other AWS services makes Step Functions a compelling orchestration service for both my ongoing WordPress bronze work and the future projects in my pipeline. This combined with some extra Lambda layers will reduce my future dev and test time.

If this post has been useful then the button below has links for contact, socials, projects and sessions:

SharkLinkButton 1

Thanks for reading ~~^~~

Categories
Developing & Application Integration

WordPress Data Extraction Automation With AWS

In this post, I set up the automation of my WordPress API data extraction Python script with AWS managed serverless services.

Table of Contents

Introduction

In my previous post, I wrote a Python script for extracting WordPress API data. While it works fine, it relies on me logging in and pressing buttons. This isn’t convenient, and would be completely out of the question in a commercial use case. Wouldn’t it be great if something could run the script for me?

Enter some AWS managed serverless services that are very adept at automation! In this post, I’ll integrate these services into my existing architecture, test that everything works and see what my AWS costs are to date.

A gentle reminder: this is my first time setting up some of these services from scratch. This post doesn’t represent best practices, may be poorly optimised or include unexpected bugs, and may become obsolete. I expect to find better ways of doing these processes in the coming months and will link updates where appropriate.

Architectural Decisions

In this section, I examine my architectural decisions before starting work. Which AWS services will perform my WordPress data extraction automation? Note that these decisions are in addition to my previous ones.

AWS Lambda

Probably no surprises here. Whenever AWS and serverless come up, Lambda is usually the first service that comes to mind.

And with good reason! AWS Lambda deploys quickly and scales on demand. It supports several programming languages and practically every AWS service. It also has a generous free tier and requires no infrastructure management.

Lambda will provide my compute resources. This includes the runtime, execution environment and network connectivity for my Python script.

Amazon Cloudwatch

Amazon CloudWatch is a monitoring service that can collect and track performance data, generate insights and respond to resource state changes. It provides features such as metrics, alarms, and logs, letting users monitor and troubleshoot their applications and infrastructure in real time.

CloudWatch will record and store my Lambda function’s logs. I can see when my function is invoked, how long it takes to run and any errors that may occur.

So if something does go wrong, how will I know?

Amazon SNS

Amazon Simple Notification Service (SNS) is a messaging service that delivers notifications to a set of recipients or endpoints. It supports various messaging protocols like SMS, email and HTTP, making it helpful for building scalable and decoupled applications.

SNS will be the link between AWS and my email inbox. It will deliver messages from AWS about my Lambda function.

So that’s my alerting sorted. How does the function get invoked?

Amazon EventBridge

Amazon EventBridge is an event bus service that enables communication between different services using events. It offers a serverless and scalable platform with advanced event routing, integration capabilities and, crucially, scheduling and time expression functionality.

EventBridge is here to handle my automation requirements. Using a CRON expression, it’ll invoke my Lambda function regularly with no user input required.

Architectural Diagram

This is an architectural diagram of the AWS automation of my WordPress data extraction process:

  1. EventBridge invokes AWS Lambda function.
  2. AWS Lambda calls Parameter Store for WordPress, S3 and SNS parameters. Parameter Store returns these to AWS Lambda.
  3. Lambda Function calls WordPress API. WordPress API returns data.
  4. API data is written to S3 bucket.

If there’s a failure, the Lambda function publishes a message to an SNS topic. SNS then delivers this message to the user’s subscribed email address.

Meanwhile, Lambda is writing to a CloudWatch Log Group throughout its invocation.

SNS & Parameter Store

In this section, I configure Amazon SNS and update AWS Parameter Store to enable my WordPress data extraction automation alerting. This won’t take long!

SNS Configuration

SNS has two fundamental concepts:

  • Topics: communication channels for publishing messages.
  • Subscriptions: endpoints to send messages to.

Firstly, I create a new wordpress-api-raw standard SNS Topic. This topic doesn’t need encryption or delivery policies, so all the defaults are fine. An Amazon Resource Name (ARN) is assigned to the new SNS Topic, which I’ll put into Parameter Store.

Next, I create a new SNS Subscription for my SNS Topic that emails me when invoked.

There’s not much else to add here! That said, SNS can do far more than this. Check out SNS’s features and capabilities in the Developer Guide.

Parameter Store Configuration

Next, I need to add the new SNS Topic ARN to AWS Parameter Store.

I create a new string parameter, and assign the SNS Topic’s ARN as the value. That’s….it! With some changes, my Python script can now get the SNS parameter in the same way as the S3 and WordPress parameters.

Speaking of changing the Python script…

Python

In this section, I integrate SNS into my existing Python script and test the new outputs.

Function Updates

My script now has a new send_sns_message function:

It expects four arguments:

  • sns_client: the boto3 client used to contact AWS.
  • topic_arn: the SNS topic to use for the message.
  • subject: the message’s subject.
  • message: the message to send.

Everything bar sns_client has string type hints. No return value is needed.

I create a try except block that attempts to send a message using the sns_client’s publish method and the supplied values. The log is updated with publish‘s success or failure.

Separately, I’ve also added a ParamValidationError exception to my get_parameter_from_ssm function. Previously the exceptions were:

Python
    except ssm_client.exceptions.ParameterNotFound:
        logging.warning(f"Parameter {parameter_name} not found.")
        return ""

    except botocore.exceptions.ClientError as e:
        logging.error(f"Error getting parameter {parameter_name}: {e}")
        return ""

They are now:

Python
    except ssm_client.exceptions.ParameterNotFound as pnf:
        logging.warning(f"Parameter {parameter_name} not found: {pnf}")
        return ""

    except botocore.exceptions.ParamValidationError as epv:
        logging.error(f"Error getting parameter {parameter_name}: {epv}")
        return ""

    except botocore.exceptions.ClientError as ec:
        logging.error(f"Error getting parameter {parameter_name}: {ec}")
        return ""

Variable Updates

My send_sns_message function needs some new variables. Firstly, I create an SNS Client using my existing boto3 session and assign it to client_sns:

Python
    # AWS sessions and clients
    session = boto3.Session()
    client_ssm = session.client('ssm')
    client_s3 = session.client('s3')
    client_sns = session.client('sns')
    requests_session = requests.Session()

Next, I assign the new SNS parameter name to a parametername_snstopic object:

Python
    # AWS Parameter Store Names
    parametername_s3bucket = '/s3/lakehouse/name/raw'
    parametername_snstopic = '/sns/pipeline/wordpressapi/raw'
    parametername_wordpressapi = '/wordpress/amazonwebshark/api/mysqlendpoints'

Finally, I create a new lambdaname object which I’ll use for SNS notifications in my Python script’s body.

Python
    # Lambda name for messages
    lambdaname = 'wordpress_api_raw.py'

Script Body Updates

These changes integrate SNS failure messages into my script. There are no success messages…because I get enough emails as it is.

SNS Parameter Retrieval & Check

There’s now a third use of get_parameter_from_ssm, using parametername_snstopic to get the SNS topic ARN from AWS Parameter Store:

Python
    # Get SNS topic from Parameter Store
    logging.info("Getting SNS parameter...")
    sns_topic = get_parameter_from_ssm(client_ssm, parametername_snstopic)

I’ve also added an SNS parameter check. It behaves differently to the other checks, as it’ll raise a ValueError if nothing is found:

Python
    # Check an SNS topic has been returned.
    if not sns_topic:
        message = "No SNS topic returned."
        logging.warning(message)
        raise ValueError(message)

I want to cause an invocation failure in this situation, as not having the SNS topic ARN is a critical and unrecoverable problem which the automation process will have no way to alert me about.

However, the AWS Lambda service can warn me about invocation failures. This is something I’ll set up later on.

Failure Getting Other Parameters

The get_parameter_from_ssm response checks have changed. Previously, if a parameter request (the API endpoints in this case) returns a blank string then a warning is logged and the invocation ends:

Python
    # Check the API list isn't empty
    if not any(api_endpoints_list):
        logging.warning("No API endpoints returned.")
        return

Now, new subject and message objects are created with details about the error. The message string is added to the log, and both objects are passed to send_sns_message along with the SNS client and SNS topic ARN:

Python
    # Check the API list isn't empty
    if not any(api_endpoints_list):
        message = "No API endpoints returned."
        subject = f"{lambdaname}: Failed"

        logging.warning(message)
        send_sns_message(client_sns, sns_topic, subject, message)
        return

The S3 check now works similarly:

Python
    # Check an S3 bucket has been returned.
    if not s3_bucket:
        message = "No S3 bucket returned."
        subject = f"{lambdaname}: Failed"

        logging.warning(message)
        send_sns_message(client_sns, sns_topic, subject, message)
        return

If either of these checks fail, no WordPress API calls are made and the invocation stops.

Failure During For Loop

Previously, the script’s final output was a log entry showing the endpoint_count_success and endpoint_count_failure values:

Python
    logging.info("WordPress API Raw process complete: " \
                 f"{endpoint_count_success} Successful | {endpoint_count_failure} Failed.")

This section has now been expanded. If endpoint_count_failure is greater than zero, a message object is created including the number of failures.

message is then written to the log, and is passed to send_sns_message with a subject and the SNS client and SNS topic ARN:

Python
    logging.info("WordPress API Raw process complete: " \
                 f"{endpoint_count_success} Successful | {endpoint_count_failure} Failed.")

    # Send SNS notification if any failures found
    if endpoint_count_failure > 0:
        message = f"{lambdaname} ran with {endpoint_count_failure} errors.  Please check logs."
        subject = f"{lambdaname}: Ran With Failures"

        logging.warning(message)
        send_sns_message(client_sns, sns_topic, subject, message)

If a loop iteration fails, the script ends it and starts the next. One or more loop iterations can fail while the others succeed.

That completes the script changes. Next, I’ll test the failure responses.

SNS Notification Testing

SNS should now send me one of two emails depending on which failure occurs. I can test these locally by inverting the logic of some if conditions.

Firstly, I set the S3 bucket check to fail if a bucket name is returned:

Python
    # Check an S3 bucket has been returned.
    if s3_bucket:
        message = "No S3 bucket returned."
        subject = f"{lambdaname}: Failed"

        logging.warning(message)
        send_sns_message(client_sns, sns_topic, subject, message)
        return

Upon invocation, an email arrives with details of the failure:

2024 02 06 wordpress api raw.py Failed

Secondly, I change the loop’s data check condition to fail if data is returned:

Python
        # If no data returned, record failure & end current iteration
        if api_json:
            logging.warning("Skipping attempt due to API call failure.")
            endpoint_count_failure += 1
            continue

This ends the current loop iteration and increments the endpoint_count_failure value. Then, in a check after the loop, an SNS message is triggered when endpoint_count_failure is greater than 0:

Python
    # Send SNS notification if any failures found
    if endpoint_count_failure > 0:
        message = f"{lambdaname} ran with {endpoint_count_failure} errors.  Please check logs."
        subject = f"{lambdaname}: Ran With Failures"

        logging.warning(message)
        send_sns_message(client_sns, sns_topic, subject, message)

Now, a different email arrives with the number of failures:

2024 02 06 wordpress api raw.py RanWithFailures

Success! Now the Python script is working as intended, it’s time to deploy it to AWS.

Lambda & CloudWatch

In this section, I start creating the automation of my WordPress data extraction process by creating and configuring a new AWS Lambda function. Then I deploy my Python script, set some error handling and test everything works.

I made extensive use of Martyn Kilbryde‘s AWS Lambda Deep Dive A Cloud Guru course while completing this section. It was exactly the kind of course I needed – a bridge between theoretical certification content and hands-on experience in my own account.

This section is the result of my first pass through the course. There are better ways of doing what I’ve done here, but ultimately I have to start somewhere. I have several course sections to revisit, so watch this space!

Let’s begin with creating a new Lambda function.

Function Creation

Lambda function creation steps vary depending on whether the function is being written from scratch, or if it uses a blueprint or container image. I’m writing from scratch, so after choosing a name I must choose the function’s runtime. Runtimes consist of the programming language and the specific version. In my case, this is Python 3.12.

Next are the permissions. By design, AWS services need permissive IAM roles to interact with other services. A Lambda function with no IAM role cannot complete actions like S3 reads or CloudWatch writes.

Thankfully, AWS are one step ahead. By default, Lambda creates a basic execution role for each new function with some essential Amazon CloudWatch actions. With this role, the function can record invocations, resource utilization and billing details in a log stream. Additional IAM actions can be assigned to the role as needed.

Script Deployment

Now I have a function, I need to upload my Python script. There are many ways of doing this! I followed the virtual environment process, as I already had one from developing the script in VSCode. This environment’s contents are in the requirements.txt file listed in the Resources section.

While this was successful, the resulting deployment package is probably far bigger than it needs to be. Additionally, I didn’t make use of any of the toolkits, frameworks or pipelines with Lambda functionality. I expect my future deployments to improve!

Lambda Destination

There’s one more Lambda feature I want to use: a Lambda Destination.

From the AWS Compute blog:

With Destinations, you can route asynchronous function results as an execution record to a destination resource without writing additional code. An execution record contains details about the request and response in JSON format including version, timestamp, request context, request payload, response context, and response payload.

https://aws.amazon.com/blogs/compute/introducing-aws-lambda-destinations/

Here, I want a destination that will email me if my Lambda function fails to run. This helps with visibility, and will be vital if the SNS parameter isn’t returned!

With no Destination, the failure would only appear in the function’s log and I might not know about it for days. With a Destination enabled, I’ll know about the failure as soon as the email comes through.

My destination uses the following config:

  • Invocation Type: Asynchronous
  • Condition: On Failure
  • Destination Type: SNS topic

The SNS topic is a general Failed Lambda one that I already have. The Lambda service can use this SNS topic regardless of any script problems.

Lambda & CloudWatch Testing

With the function created and deployed, it’s testing time! Does my function work and log as intended?

Error: Timeout Exceeded

It doesn’t take long to hit my first problem:

Task timed out after 3.02 seconds

All Lambdas created in the console start with a three-second timeout. This is great at preventing runaway invocations, but I clearly need longer than three seconds.

After some local testing, I increased the timeout to two minutes in the function’s config:

2023 12 19 LambdaTimeout

Error: Access Denied

Next, I start hitting permission errors:

An error occurred (AccessDeniedException) when calling the GetParameter operation: User is not authorized to perform: ssm:GetParameter on resource because no identity-based policy allows the ssm:GetParameter action.

My Lambda’s basic execution role can interact with CloudWatch, but nothing else. This is by design in the interests of security. However, this IAM role is currently too restrictive for my needs.

The role’s policy needs to allow additional actions:

To follow IAM best practise, I should also apply least-privilege permissions. Instead of a wildcard character, I should restrict the policy to the specific ARNs of my AWS resources.

For example, this IAM policy is too permissive as it allows access to all parameters in Parameter Store:

JSON
{
	"Version": "2012-10-17",
	"Statement": [
		{
			"Sid": "Statement1",
			"Effect": "Allow",
			"Action": [
				"ssm:GetParameter"
			],
			"Resource": [
				"*"
			]
		}
	]
}

Conversely, this IAM policy allows access to specific parameter ARNs only.

(Well, it did before the ARNs were redacted – Ed.)

JSON
"Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "ssm:GetParameter"
            ],
            "Resource": [
                "arn:aws:ssm:REDACTED",
                "arn:aws:ssm:REDACTED",
                "arn:aws:ssm:REDACTED"
            ]
        }

My S3 policy does have a wildcard value, but it’s at the prefix level:

JSON
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "s3:PutObject"
            ],
            "Resource": [
                "arn:aws:s3:::REDACTED/wordpress-api/*"
            ]
        }

My Lambda function can now write to my bucket, but only to the wordpress-api prefix. A good way to understand the distinction is to look at an AWS example:

arn:aws:s3:::my_corporate_bucket/*
arn:aws:s3:::my_corporate_bucket/Development/*

In this example, line 1 covers the entire my_corporate_bucket S3 bucket. Line 2 is more focused, only covering all objects in the Development prefix of the my_corporate_bucket bucket.

Error: Memory Exceeded

With the new policy, my function runs smoothly. Until:

Runtime exited with error: signal: killed Runtime.ExitError

This one was weird because the function kept suddenly stopping at different points! I then checked further down the test summary:

2023 12 19 LambdaMaxMemoryHighlight

It’s running out of memory! Lambda assigns a default 128MB RAM to each function, and here my function was hitting 129MB. RAM can be changed in the function’s general configuration. But changed to what?

When a Lambda function runs successfully, it logs memory metrics:

Memory Size: 500 MB	Max Memory Used: 197 MB

After some trial and error, I set the function’s RAM to 250MB and have had no problems since.

Incomplete CloudWatch Logs

The last issue wasn’t an error so much as a bug. CloudWatch was showing my Lambda invocation start and end, but none of the function’s logs:

2023 12 22 LambdaNoLogs

The solution was found in Python’s basicConfig‘s docstring:

This function does nothing if the root logger already has handlers configured, unless the keyword argument force is set to True.

basicConfig docstring

Well, AWS Lambda does have built-in logging. And my basicConfig isn’t forcing anything! One swift update and redeployment later:

Python
    logging.basicConfig(
        level = logging.INFO,
        format = "%(asctime)s [%(levelname)s]: %(message)s",
        datefmt = "%Y-%m-%d %H:%M:%S",
        force = True
        )

And my CloudWatch Log Stream is now far more descriptive!

2023 12 22 LambdaLogs

In the long run I plan to investigate Lamba’s logging abilities, but for now this does what I need.

SNS Destination Email

Finally, I want to make sure my Lambda Destination is working as expected. My function works now, so I need to force a failure. There are many ways of doing this. In this case, I used three steps:

  • Temporarily alter the function’s timeout to 3 seconds.
  • Reconfigure the function’s Asynchronous Invocation retry attempts to zero.
  • Invoke the function with a one-time EventBridge Schedule.

The low timeout guarantees a function invocation failure. Setting zero retries prevents unnecessary retries (because I want the failure to happen!) Finally, the one-time schedule will asynchronously invoke my function, which is what the Destination is looking for.

And…(redacted) success!

2024 02 09 DestinationEmail

I could clean this email up with an EventBridge Input Path (which I’ve done before), but that’s mostly cosmetic in this case.

EventBridge

In this section I configure EventBridge – the AWS service that schedules the automation of my WordPress data extraction process. While I’ve used EventBridge Rules before, this is my first time using EventBridge Scheduler. So what’s the difference?

EventBridge Scheduler 101

From the AWS EventBridge product page:

Amazon EventBridge Scheduler is a serverless scheduler that enables you to schedule tasks and events at scale. With EventBridge Scheduler you have the flexibility to configure scheduling patterns, set a delivery window, and define retry policies to ensure your critical tasks and events are reliably triggered right when you need them.

https://aws.amazon.com/eventbridge/scheduler/

EventBridge Scheduler is a fully managed service that integrates with over 200 AWS services. It supports one-time schedules and start and end dates, and can account for daylight saving time.

Cost-wise, EventBridge Schedules are changed per invocation. EventBridge’s free tier covers the first 14 million(!) invocations each month, after which each further million currently costs $1.00. These invocations can be staggered using Flexible Time Windows to avoid throttling.

AWS has published a table showing the main differences between EventBridge Scheduler and Eventbridge Rules. Essentially, Eventbridge Rules are best suited for event-based activity, while EventBridge Scheduler is best suited for time-based activity.

Schedule Setup

Let’s create a new EventBridge Schedule. After choosing a name, I need a schedule pattern. Here, I want a recurring CRON-based schedule that runs at a specific time.

EventBridge Cron expressions have six required fields which are separated by white space. My cron expression is 0 7 * * ? * which translates to:

  • The 0th minute
  • Of the seventh hour
  • On every day of the month
  • Every month,
  • Day of the week,
  • And year

In response, EventBridge shows some of the future trigger dates so I can check my expression is correct:

Sat, 02 Feb 2024 07:00:00 (UTC+00:00)
Sun, 03 Feb 2024 07:00:00 (UTC+00:00)
Mon, 04 Feb 2024 07:00:00 (UTC+00:00)
Tue, 05 Feb 2024 07:00:00 (UTC+00:00)
Wed, 06 Feb 2024 07:00:00 (UTC+00:00)

I then need to choose a flexible time window setting. This setting distributes AWS service API calls to help prevent throttling, but that’s not a problem here so I select Off.

Next, I choose the target. I have two choices: templated targets or universal targets. Templated targets are a set of popular AWS service operations, needing only the relevant ARN during setup. Universal targets can target any AWS service but require more configuration details. Lambda’s Invoke operation is a targeted template, so I use that.

Next are some optional encryption, retry and state settings. EventBridge Scheduler IAM roles are handled here too, allowing EventBridge to send events to the targeted AWS services. Finally, a summary screen shows the full schedule before creation.

The schedule then appears on the EventBridge console:

2024 02 09 AmazonEventBridgeScheduler

EventBridge Testing

Testing time! Does CloudWatch show Lambda function invocations at 07:00?

It does!

2024 02 08 CloudWatchLogs

While I’m in CloudWatch, I’ll change the log group’s retention setting. It defaults to Never Expire, but I don’t need an indefinite history for this function! Three months is fine – long enough to troubleshoot any errors, but not so long that I’m storing and potentially paying for logs I’ll never need.

Costs

In this section, I examine the current AWS costs for my WordPress data extraction and automation processes using the Billing & Cost Management console.

I began creating pipeline resources in December 2023 using various workshops and tutorials. This table shows my AWS service costs (excluding tax) accrued over December 2023 and January 2024 (the months I currently have full billing periods for):

2024 02 09 Cost Explorer

I’ll examine these costs in two parts:

  • S3 Costs: my AWS costs are all storage-based. I’ll examine my S3 API calls and how each S3 API contributes to my bill.
  • Free Tier Usage: everything else has zero cost. I’ll examine what I used and how it compares to the free tier allowances.

I’ll also take a quick look at February’s costs to date. I’ve not tagged any of the pipeline resources, so these figures are for all activity in this AWS account.

S3 Costs

S3 is the only AWS service in my WordPress data extraction and automation processes that is generating a cost. This Cost Explorer chart shows my S3 API usage over the last two full months:

2024 02 10 Cost ExplorerS3APICalls

PutObject is clearly the most used S3 API, which isn’t surprising given S3’s storage nature. Cost Explorer can also show API request totals, as shown below:

2024 02 10 Cost ExplorerS3APICallsDec23
2024 02 10 Cost ExplorerS3APICallsJan24

Remember that this includes S3 API calls from other services like S3 Inventory, CloudTrail Log Steams and Athena queries.

AWS bills summarise these figures for easier reading. This is my December 2023 S3 bill, where S3 PUT, COPY, POST and LIST requests are grouped:

2024 02 09 Billing202312

January 2024’s bill:

2024 02 09 Billing202401

Going into this depth for $0.08 might not seem worth it. But if the bill suddenly becomes $8 or $80 then having this knowledge is very useful!

The AWS Storage blog has a great post on analyzing S3 API operations that really helped here.

Free Tier Usage

The following services had no cost because my usage fell within their free tier allowances. For each zero cost on the bill, I’ll show the service and, where appropriate, the respective free tier allowance.

CloudTrail:

  • 2023-12: 7970 Events recorded.
  • 2024-01: 6605 Events recorded.

CloudWatch was the same for both months:

  • Sub 1GB-Mo log storage used of 5GB-mo log storage free tier
  • Sub 1GB log data ingested of 5GB log data ingestion free tier

Lambda 2023-12:

  • 36.976 GB-Seconds used of 400,000 GB-seconds Compute free tier
  • 47 Requests used of 1,000,000 Request free tier

Lambda 2024-01:

  • 9.572 GB-Seconds used of 400,000 GB-seconds Compute free tier
  • 8 Requests used of 1,000,000 Request free tier

Parameter Store (billed as Secrets Manager):

  • 2023-12: 31 API Requests used of 10,000 API Request free tier
  • 2024-01: 41 API Requests used of 10,000 API Request free tier

February 2024 Costs

At this time I don’t have full billing data for February, but I wanted to show the EventBridge and SNS usage to date:

EventBridge (billed as CloudWatch Events):

  • 16 Invocations used of 14 million free tier

SNS:

  • 3 Notifications used of 1,000 Email-JSON Notification free tier
  • 227 API Requests used of 1,000,000 API Request free tier

As of Feb 15, Lambda is on 71.742 GB-Seconds and 34 Requests while S3 is on 8,821 PCPL requests, 3,764 GET+ requests and 0.0052 GB-Mo storage.

Resources

The full Python script has been checked into the amazonwebshark GitHub repo, available via the button below. Included is a requirements.txt file for the Python libraries used to extract the WordPress API data. This file is unchanged from last time but is included for completeness.

GitHub-BannerSmall

Summary

In this post, I set up the automation of my WordPress API data extraction script with AWS managed serverless services.

On the one hand, there’s plenty more to do here. I have lots to learn about Lambda, like deployment improvement and resource optimisation. This will improve with time and experience.

However, my function’s logging and alerting are in place, my IAM policies meet AWS standards and I’m using the optimal services for my compute and scheduling. And, most importantly, my automation pipeline works!

My attention now turns to the data itself. My next WordPress Data Pipeline post will look at transforming and loading the data so I can put it to use! If this post has been useful, the button below has links for contact, socials, projects and sessions:

SharkLinkButton 1

Thanks for reading ~~^~~